.Tính:
A=1.2^2+2.3^2+3.4^2+...+2017.2018^2
Dau "." là dấu nhân nha các bạn
Tính:
A= 2017: ( 1/1.2+1/2.3+1/3.4...+1/2017.2018)
\(A=2017:\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2017.2018}\right)\)
\(=2017:\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\right)\)
\(=2017:\left(1-\dfrac{1}{2018}\right)\)
\(=2017:\dfrac{2017}{2018}\)
\(=2017\cdot\dfrac{2018}{2017}\)
\(=2018\)
#NgDat
\(A=2017:\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2017\cdot2018}\right)\)
\(A=2017:\left(\dfrac{1}{1}\cdot\dfrac{1}{2}+\dfrac{1}{2}\cdot\dfrac{1}{3}+\dfrac{1}{3}\cdot\dfrac{1}{4}+...+\dfrac{1}{2017}\cdot\dfrac{1}{2018}\right)\)
\(A=2017:\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\right)\)
\(A=2017:\left(\dfrac{1}{1}-\dfrac{1}{2018}\right)\)
\(A=2017:\left(\dfrac{2018}{2018}-\dfrac{1}{2018}\right)\)
\(A=2017:\dfrac{2017}{2018}\)
\(A=2018.\)
Tính A = 1.2^2+2.3^2+3.4^2+....+2017.2018^2
Các bạn giúp mk với. Mk đang cần gấp 😦
tính các tổng sau:
A=1.2+2.3+3.4+...+n(n+1)
B=1.2.3+2.3.4+...+n(n+1)(n+2)
C=1.2+3.4+5.6+...+2017.2018
D=1.4+2.5+3.6+...+n(n+3)
Giúp mk nha, ai nhanh mk k!
1. 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=>S
Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên.
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3
Việc sử dụng trước kết quả tổng 1^2+...+n^2 theo tôi là ngược tiến trình.
2. S = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1)
4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4
ghi dọc cho dễ nhìn:
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1)
ad cho k chạy từ 2 đến n ta có:
1.2.3.4 = 1.2.3.4
2.3.4.4 = 2.3.4.5 - 1.2.3.4
3.4.5.4 = 3.4.5.6 - 2.3.4.5
...
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn)
4S = (n-1)n(n+1)(n+2)
3.
Tính A= 1+(1+2)+(1+2+3)+........+(1+2+3+.....+2017)/1.2+2.3+3.4+.......+2017.2018
A=1.2+2.3+3.4+...+2013.2014
hãy tính A
(dấu chấm là dấu nhân nha trừ chỗ ... )
Tham khảo:
A=1.2+2.3+3.4+...+2013.2014
3A = 1.2.3 + 2.3.3 + 3.4.3 +...+ 2013.2014.3
Mà: 1.2.3 = 1.2.3
2.3.3 = 2.3.4 - 2.3.1
3.4.3 = 3.4.5 - 3.4.2
2012.2013.3 = 2012.2013.2014 - 2012.2013.2011
2013.2014.3 = 2013.2014.2015 - 2013.2014.2012
=> 3S = 2013.2014.2015
=> A = 2013.2014.2015 / 3 = 2723058910
tìm chữ số tận cùng của biểu thức :
A=1.2+2.3+3.4+......+1001.1002
dấu . là dấu nhân nha
các bạn giải giúp mình nhé . mình đang cần gấp
=> 3A = 3 [ 1.2 + 2.3 + 3.4 + ... + (n-1).n ]
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 +... + 1001.1002.3
=> 3A = 1.2.3 + 2.3 . ( 4-1 ) +3.4.( 5-2 ) + ... + 1001.1002 ( 1003-1000 )
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +... + 1001.1002 .1003 - 1000.1001.1002
=> 3A = 1001.1002.1003
=> A = 1001 . 1002 . 1003 : 3
=> A = ?
Tính:
\(A=1.2^2+2.3^2+3.4^2+.....+2017.2018^2\)
Tính A=1+(1+2)+(1+2+3)+....+(1+2+3+.....+2017)/1.2+2.3+3.4+......+2017.2018
Ta có :
\(A=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{\frac{2}{2}+\frac{2\left(2+1\right)}{2}+\frac{3\left(3+1\right)}{2}+...+\frac{2017\left(2017+1\right)}{2}}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{\frac{2}{2}+\frac{2.3}{2}+\frac{3.4}{2}+...+\frac{2017.2018}{2}}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{\frac{1.2+2.3+3.4+...+2017.2018}{2}}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{1.2+2.3+3.4+...+2017.2018}{2}.\frac{1}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{1}{2}\)
Vậy \(A=\frac{1}{2}\)
Chúc bạn học tốt ~
1.22+2.32+3.42+...+2016.20172+2017.20182