giải phương trình:
\(\frac{2\cos2x}{1-\sin2x}=0\)
giúp với! (Lớp 11)
giải phương trình: \(\sin2x+3\cos2x+8\sin x+14\cos x+11=0\)
giải phương trình 1) \(\dfrac{cos2x}{1-sin2x}=0\)
2) tan3x=tan4x
3) cot2x.sin3x=0
1.
ĐK: \(x\ne\dfrac{\pi}{4}+k\pi\)
\(\dfrac{cos2x}{1-sin2x}=0\)
\(\Leftrightarrow cos2x=0\)
\(\Leftrightarrow2x=\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Đối chiếu điều kiên ta được \(x=-\dfrac{\pi}{4}+k\pi\)
2.
ĐK: \(x\ne\dfrac{\pi}{6}+\dfrac{k\pi}{3};x\ne\dfrac{\pi}{8}+\dfrac{k\pi}{4}\)
\(tan3x=tan4x\)
\(\Leftrightarrow3x=4x+k\pi\)
\(\Leftrightarrow x=k\pi\)
3.
ĐK: \(x\ne\dfrac{k\pi}{2}\)
\(cot2x.sin3x=0\)
\(\Leftrightarrow\dfrac{cos2x}{sin2x}.sin3x=0\)
\(\Leftrightarrow cos2x.sin3x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin3x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{2}+k\pi\\3x=k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x=\dfrac{k\pi}{3}\end{matrix}\right.\)
Giải phương trình: sinx + cosx + 1 + sin2x + cos2x = 0
Giải phương trình: sin2x-cos2x+3sinx-cosx -1=0
\(sin2x-cos2x+3sinx-cosx-1=0\)
\(\Leftrightarrow2sinxcosx-\left(1-2sin^2x\right)+3sinx-cosx-1=0\)
\(\Leftrightarrow2sinxcosx-1+2sin^2x+3sinx-cosx-1=0\)
\(\Leftrightarrow2sin^2x+3sinx-2+cosx\left(2sinx-1\right)=0\)
\(\Leftrightarrow2\left(sinx-\dfrac{1}{2}\right)\left(sinx+2\right)+cosx\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sinx+2\right)+cosx\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sinx+2+cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2sinx-1=0\\sinx+cosx+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\sinx+cosx=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}sinx=sin\dfrac{\pi}{6}\\\sqrt[]{2}\left(sinx.\dfrac{1}{\sqrt[]{2}}+cosx.\dfrac{1}{\sqrt[]{2}}\right)=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\\\sqrt[]{2}sin\left(x+\dfrac{\pi}{4}\right)=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\\sin\left(x+\dfrac{\pi}{4}\right)=-\sqrt[]{2}\left(vô.lý\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\) \(\left(k\in Z\right)\)
Giải phương trình:
a, 2sin2x - cos2x = 7sinx + 2cosx - 4
b, sin2x - cos2x + 3sinx - cosx -1 = 0
c, sin2x - 2cos2x + 3sinx - 4cosx + 1 = 0
a) <=> 4sinxcosx -(2cos2x-1)=7sinx+2cosx-4
<=> 2cos2x+(2-4sinx)cosx+7sinx-5=0
- sinx=1 => 2cos2x-2cosx+2=0
pt trên vn
b) <=> 2sinxcosx-1+2sin2x+3sinx-cosx-1=0
<=> cos(2sinx-1)+2sin2x+3sinx-2=0
<=> cosx(2sinx-1)+(2sinx-1)(sinx+2)=0
<=> (2sinx-1)(cosx+sinx+2)=0
<=> sinx=1/2 hoặc cosx+sinx=-2(vn)
<=> x= \(\frac{\pi}{6}+k2\pi\) hoặc \(x=\frac{5\pi}{6}+k2\pi\left(k\in Z\right)\)
Giải phương trình sin2x-cos2x+5sinx-cosx-2=0
<=> (2sinxcosx-cosx)+5sinx-2-cos2x=0
<=> cosx(2sinx-1)+2\(sin^2x\)+5sinx-3=0
<=> cosx(2sinx-1) +(2sinx-1)(sinx+3)
<=> (2sinx-1)(cosx+sinx+3)=0
<=>\(\begin{cases}sinx=\frac{1}{2}\\cosx+sinx+3=0\end{cases}\)
+) sinx=1/2
<=> \(x=\frac{\pi}{2}+k2\pi\) với k thuộc Z
+) cosx+sinx+3= <=>\(\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)=-3
<=> \(sin\left(x+\frac{\pi}{4}\right)\)=\(\frac{-\sqrt{3}}{2}\)
<=>\(sin\left(x+\frac{\pi}{4}\right)=sin\frac{-\pi}{3}\)
<=> \(\left[\begin{array}{nghiempt}x=\frac{-\pi}{3}+k2\pi\\x=\frac{4\pi}{3}+k2\pi\end{array}\right.\)với k thuộc Z
vậy pht có 3 nghiệm:..
giải các phương trình : a) \(\sin x+\sin2x+\sin3x=\cos x+\cos2x+\cos3x\) ; b) \(\sin x=\sqrt{2}\sin5x-\cos x\) ; c) \(\frac{1}{\sin2x}+\frac{1}{\cos2x}=\frac{2}{\sin4x}\) ; d)
\(\sin x+\cos x=\frac{\cos2x}{1-\sin2x}\)
giải các phương trình : a) \(\sin x+\sin2x+\sin3x=\cos x+\cos2x+\cos3x\) ; b) \(\sin x=\sqrt{2}\sin5x-\cos x\) ; c) \(\frac{1}{\sin2x}+\frac{1}{\cos2x}=\frac{2}{\sin4x}\) ; d)
\(\sin x+\cos x=\frac{\cos2x}{1-\sin2x}\)
Giải các phương trình:
\(a,sin4x.cosx-sin3x=0\)
\(b,sin2x+\sqrt{3}cos2x=\sqrt{2}\)
a, \(sin4x.cosx-sin3x=0\)
\(\Leftrightarrow\dfrac{1}{2}sin5x+\dfrac{1}{2}sin3x-sin3x=0\)
\(\Leftrightarrow sin5x=sin3x\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=3x+k2\pi\\5x=\pi-3x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\end{matrix}\right.\)
b, \(sin2x+\sqrt{3}cos2x=\sqrt{2}\)
\(\Leftrightarrow\dfrac{1}{2}sin2x+\dfrac{\sqrt{3}}{2}cos2x=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{3}\right)=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{3}=\dfrac{\pi}{4}+k2\pi\\2x+\dfrac{\pi}{3}=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{24}+k\pi\\x=\dfrac{5\pi}{24}+k\pi\end{matrix}\right.\)