Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai_Anh_Thư123
Xem chi tiết
Nguyễn Võ Anh Nguyên
2 tháng 9 2017 lúc 20:12

Cái này là BĐT Schwarz nha bạn

๖ۣۜØʑąωą кเşşッ
13 tháng 1 2019 lúc 12:37

+) Áp dụng BĐT Cô - si cho 4 số dương x; x; y; z ta có:

x+x+y+z≥44√x.x.y.z

=> 2x + y + z ≥44√x.x.y.z                  (1)

Với 4 số dương 1x ;1x ;1y ;1z  ta có: 1x +1x +1y +1z ≥4.4√1x .1x .1y .1z     (2)

Từ (1)(2) => (2x+y+z)(1x +1x +1y +1z )≥4.4√x.x.y.z4.4√1x .1x .1y .1z =16

=> 12x+y+z ≤116 .(2x +1y +1z ) (*)

Tương tự, ta có: 1x+2y+z ≤116 .(1x +2y +1z )   (**)

1x+y+2z ≤116 .(1x +1y +2z )                           (***)

Từ (*)(**)(***) => Vế trái ≤116 (4x +4y +4z )=14 .(1x +1y +1z )=14 .4=1

=> đpcm

Kiệt Nguyễn
13 tháng 11 2019 lúc 21:54

Áp dụng BĐT Cauchy- schwarz:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)

(Dấu "="\(\Leftrightarrow x=y=z\))

Khách vãng lai đã xóa
Lê Đức Mạnh
Xem chi tiết
nguyễn thị bình minh
23 tháng 10 2017 lúc 17:28

\(\sqrt{\dfrac{x}{y}}-2.\sqrt{\sqrt{\dfrac{x}{y}}}.\sqrt{\sqrt{\dfrac{y}{x}}}+\sqrt{\dfrac{y}{x}}+2.\sqrt{\sqrt{\dfrac{x}{y}}.\sqrt{\dfrac{y}{x}}}\)

=\(\left(\sqrt{\sqrt{\dfrac{x}{y}}}-\sqrt{\sqrt{\dfrac{y}{x}}}\right)^2+2\)

lớn hơn hoặc bằng 2

dấu = xảy ra <=>

\(\left(\sqrt{\sqrt{\dfrac{x}{y}}}-\sqrt{\sqrt{\dfrac{y}{x}}}\right)^2+2=2\)

=>\(\sqrt{\sqrt{\dfrac{x}{y}}}=\sqrt{\sqrt{\dfrac{y}{x}}}\)

=>\(\dfrac{x}{y}=\dfrac{y}{x}\)

=>x2=y2

=>x=y

le minh hoan
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 11 2018 lúc 10:13

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Nếu a ≥ 0, b  ≥  0, c  ≥  0 thì :

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Nguyễn Linh Chi
Xem chi tiết
Nguyễn Khang
10 tháng 11 2019 lúc 18:59

Giải xàm tí ạ!\(VT-VP=\frac{1}{2}\left[\left(x^2-3x+1\right)^2+\left(y^2-3y+1\right)^2+\left(x-y\right)^2\left(5-x-y\right)\left(x+y-1\right)\right]\ge0\)

=> qed

Khách vãng lai đã xóa
Nguyễn Linh Chi
12 tháng 11 2019 lúc 18:26

??? KHang ơi! Sai rồi ? Tại sao VT - Vp = 1/2. Dòng thứ 2 ??? 

Khách vãng lai đã xóa
tth_new
12 tháng 11 2019 lúc 18:52

Nguyễn Linh Chi còn khúc dưới nữa mà cô, tại nó dài quá nên olm ko hiển thị hết trng một dòng. Mà bài đó em cũng làm xàm:)

Khách vãng lai đã xóa
kimochi
Xem chi tiết
kudo shinichi
18 tháng 5 2019 lúc 13:52

\(\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge3\)

\(\Leftrightarrow\)\(\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\ge0\)

\(\Leftrightarrow\frac{4x^4y^4+x^4\left(x^2+y^2\right)^2+y^4\left(x^2+y^2\right)^2-3x^2y^2\left(x^2+y^2\right)^2}{x^2y^2\left(x^2+y^2\right)^2}\ge0\)

\(\Leftrightarrow4x^4y^4+x^4\left(x^4+2x^2y^2+y^4\right)+y^4\left(x^4++2x^2y^2+y^4\right)-3x^2y^2\left(x^4+2x^2y^2+y^4\right)\ge0\)

\(\Leftrightarrow4x^4y^4+x^8+2x^6y^2+x^4y^4+x^4y^4+2x^2y^6+y^8-3x^6y^2-6x^4y^4-3x^2y^6\ge0\)

\(\Leftrightarrow x^8+y^8-x^6y^2-x^2y^6\ge0\)

\(\Leftrightarrow x^6\left(x^2-y^2\right)-y^6\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow\left(x^2-y^2\right)^2\left(x^4+x^2y^2+y^4\right)\ge0\)( luôn đúng )

=> \(\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge3\)

Dấu " = " xảy ra <=> x=y

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 10 2018 lúc 8:56

Đáp án D

Thị Thu Thúy Lê
Xem chi tiết
alibaba nguyễn
11 tháng 5 2017 lúc 13:59

Cách khác: 

\(\frac{\left(x+y\right)^2}{2}+\frac{\left(x+y\right)}{4}\ge2xy+\frac{x+y}{4}\)

\(=\frac{4xy+x+4xy+y}{4}=\frac{x\left(4y+1\right)+y\left(4x+1\right)}{4}\)

\(\ge\frac{4x\sqrt{y}+4y\sqrt{x}}{4}=x\sqrt{y}+y\sqrt{x}\)

Dấu = xảy ra khi \(x=y=\frac{1}{4}\)

Lầy Văn Lội
11 tháng 5 2017 lúc 11:48

\(\frac{1}{2}\left(x+y\right)\left(x+y+\frac{1}{2}\right)=\frac{1}{2}\left(x+y\right)\left(x+\frac{1}{4}+y+\frac{1}{4}\right)\)

Áp dụng bất đẳng thức cauchy:

\(x+y\ge2\sqrt{xy}\)

\(x+\frac{1}{4}\ge2\sqrt{\frac{x}{4}}=\sqrt{x}\)

\(y+\frac{1}{4}\ge2\sqrt{\frac{y}{4}}=\sqrt{y}\)

do đó \(VT\ge\frac{1}{2}.2.\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)=x\sqrt{y}+y\sqrt{x}\)(đpcm)

Dấu = xảy ra khi \(x=y=\frac{1}{4}\)

Mạnh Phan
Xem chi tiết