Ôn tập chương 1: Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Đức Mạnh

Có x>0, y>0. Chứng minh: \(\dfrac{\sqrt{x}}{\sqrt{y}}+\dfrac{\sqrt{y}}{\sqrt{x}}\)>_2

Dấu đẳng thức xảy ra khi nào ?

nguyễn thị bình minh
23 tháng 10 2017 lúc 17:28

\(\sqrt{\dfrac{x}{y}}-2.\sqrt{\sqrt{\dfrac{x}{y}}}.\sqrt{\sqrt{\dfrac{y}{x}}}+\sqrt{\dfrac{y}{x}}+2.\sqrt{\sqrt{\dfrac{x}{y}}.\sqrt{\dfrac{y}{x}}}\)

=\(\left(\sqrt{\sqrt{\dfrac{x}{y}}}-\sqrt{\sqrt{\dfrac{y}{x}}}\right)^2+2\)

lớn hơn hoặc bằng 2

dấu = xảy ra <=>

\(\left(\sqrt{\sqrt{\dfrac{x}{y}}}-\sqrt{\sqrt{\dfrac{y}{x}}}\right)^2+2=2\)

=>\(\sqrt{\sqrt{\dfrac{x}{y}}}=\sqrt{\sqrt{\dfrac{y}{x}}}\)

=>\(\dfrac{x}{y}=\dfrac{y}{x}\)

=>x2=y2

=>x=y


Các câu hỏi tương tự
Hiền Cherry
Xem chi tiết
Quách Trần Gia Lạc
Xem chi tiết
Tùng
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Nhan Thanh
Xem chi tiết
Đinh Quỳnh Hương Giang
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Nguyên Thảo Lương
Xem chi tiết
Nguyễn Ngọc Thùy Duyên
Xem chi tiết