Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Chí Thành
Xem chi tiết
Phương Trinh
Xem chi tiết
alibaba nguyễn
10 tháng 9 2016 lúc 7:50

Đặt \(\hept{\begin{cases}\sqrt{3+x}=a\\\sqrt{6-x}=b\end{cases}}\)

Ta có a2 + b= 9

a + b - ab = 3

Tới đâu thì bài toán đơn giản rồi nên bạn tự làm nha

alibaba nguyễn
10 tháng 9 2016 lúc 7:53

Câu b làm tương tự

Lizzie
Xem chi tiết
Wan
Xem chi tiết
Thắng Nguyễn
9 tháng 9 2017 lúc 11:28

CÁi  này easy mà .-.

\(\frac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x\)

\(\Leftrightarrow\frac{\frac{\left(7-x\right)-\left(x-5\right)}{\left(\sqrt[3]{7-x}\right)^2+\left(\sqrt[3]{x-5}\right)^2+\sqrt[3]{7-x}\sqrt[3]{x-5}}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}+\left(x-6\right)=0\)

\(\Leftrightarrow\frac{\frac{-2\left(x-6\right)}{\left(\sqrt[3]{7-x}\right)^2+\left(\sqrt[3]{x-5}\right)^2+\sqrt[3]{7-x}\sqrt[3]{x-5}}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}+\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(\frac{\frac{-2}{\left(\sqrt[3]{7-x}\right)^2+\left(\sqrt[3]{x-5}\right)^2+\sqrt[3]{7-x}\sqrt[3]{x-5}}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}+1\right)=0\)

\(\Rightarrow x-6=0\Rightarrow x=6\)

Phương Trinh
Xem chi tiết
alibaba nguyễn
4 tháng 9 2016 lúc 0:26

a/ Đặt \(\sqrt[3]{x+5}=a\)\(\sqrt[3]{x+6}=b\)

Từ đó PT <=> a + b = \(\sqrt[3]{a^3+b^3}\)

<=> a+ b+ 3ab(a+b) = a3 + b3

<=> 3ab(a+b) = 0

<=> a = 0 hoặc b = 0

Thế vào giải ra là tìm được nghiệm

alibaba nguyễn
4 tháng 9 2016 lúc 0:27
Câu b làm tương tự
Phương Trinh
4 tháng 9 2016 lúc 8:58

Bạn giải bằng cách biến đổi tương đưng hộ mình được không. Với lại bạn giải câu b hộ mình với

Hoàng Bắc Nguyệt
Xem chi tiết
Trương Huy Hoàng
14 tháng 12 2020 lúc 22:59

a, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\sqrt{\dfrac{3}{2}}\))

Vì hai vế ko âm, bp 2 vế ta được:

2x2 - 3 = 4x - 3

\(\Leftrightarrow\) 2x2 = 4x

\(\Leftrightarrow\) x2 = 2x

\(\Leftrightarrow\) x2 - 2x = 0

\(\Leftrightarrow\) x(x - 2) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)

Vậy S = {2}

b, \(\sqrt{2x-1}=\sqrt{x-1}\) (x \(\ge\) 1)

Vì hai vế ko âm, bp 2 vế ta được:

2x - 1 = x - 1

\(\Leftrightarrow\) x = 0 (KTM)

Vậy x = \(\varnothing\)

c, \(\sqrt{x^2-x-6}=\sqrt{x-3}\) (x \(\ge\) 3)

Vì hai vế ko âm, bp 2 vế ta được:

x2 - x - 6 = x - 3

\(\Leftrightarrow\) x2 - 2x - 3 = 0

\(\Leftrightarrow\) x2 - 3x + x - 3 = 0

\(\Leftrightarrow\) x(x - 3) + (x - 3) = 0

\(\Leftrightarrow\) (x - 3)(x + 1) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=-1\left(KTM\right)\end{matrix}\right.\)

Vậy S = {3}

d, \(\sqrt{x^2-x}=\sqrt{3x-5}\) (x \(\ge\) \(\dfrac{5}{3}\))

Vì hai vế ko âm, bp 2 vế ta được:

x2 - x = 3x - 5

\(\Leftrightarrow\) x2 - 4x + 5 = 0

\(\Leftrightarrow\) x2 - 4x + 4 + 1 = 0

\(\Leftrightarrow\) (x - 2)2 + 1 = 0

Vì (x - 2)2 \(\ge\) 0 với mọi x \(\ge\) \(\dfrac{5}{3}\) \(\Rightarrow\) (x - 2)2 + 1 > 0 với mọi x \(\ge\) \(\dfrac{5}{3}\)

\(\Rightarrow\) Pt vô nghiệm

Vậy S = \(\varnothing\)

Chúc bn học tốt!

Hoàng Bắc Nguyệt
14 tháng 12 2020 lúc 22:40

Nguyễn Lê Phước Thịnh nhờ anh xíu ạ

Phạm Minh Đức
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 12 2021 lúc 7:05

\(a,PT\Leftrightarrow x^2-3x+2+x^2-x\sqrt{3x-2}=0\left(x\ge\dfrac{2}{3}\right)\\ \Leftrightarrow\left(x^2-3x+2\right)+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=0\\ \Leftrightarrow\left(x^2-3x+2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\)

Vì \(x\ge\dfrac{2}{3}>0\Leftrightarrow1+\dfrac{x}{x+\sqrt{3x-2}}>0\)

Do đó \(x\in\left\{1;2\right\}\)

Nguyễn Hoàng Minh
10 tháng 12 2021 lúc 7:07

\(b,ĐK:0\le x\le4\\ PT\Leftrightarrow x+2\sqrt{x}+1=6\sqrt{x}-3-\sqrt{4-x}\\ \Leftrightarrow x-4\sqrt{x}+4=-\sqrt{4-x}\\ \Leftrightarrow\left(\sqrt{x}-2\right)^2=-\sqrt{4-x}\)

Vì \(VT\ge0\ge VP\Leftrightarrow VT=VP=0\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{4-x}=0\end{matrix}\right.\Leftrightarrow x=4\left(tm\right)\)

Vậy PT có nghiệm \(x=4\)

Nguyễn MInh Hồng
Xem chi tiết
Dương Thị Thu Hiền
Xem chi tiết