cho x-y =1 ,tinh gia tri bthuc
A=x3-y3-3xy
cho x+y =1 . tinh gia tri cua bieu thuc A=x^3+y^3+3xy
chox-y=1. tinh gia tri cua bieu thuc B=x^3-y^3-3xy
cho x+y=1 . tinh gia tri cua bieu thuc C=x^3+y^3+3xy(x^2+y^2)+6x^2*y^2(x+y)
Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)
\(=\left(x+y\right)^3=1^3=1\)
Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)
\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)
\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)
\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)
a) Cho x + y = 1. Tính giá trị biểu thức A = x3 + y3 +3xy
b) Cho x - y = 1. Tính giá trị biểu thức B = x3 - y3 -3xy
a) \(A=x^3+y^3+3xy\)
\(=x^3+y^3+3xy\left(x+y\right)\) (do \(x+y=1\))
\(=x^3+3x^2y+3xy^2+y^3\)
\(=\left(x+y\right)^3\) \(=1\)
b) \(B=x^3-y^3-3xy\)
\(=x^3-y^3-3xy\left(x-y\right)\) (do \(x-y=1\))
\(=x^3-3x^2y+3xy^2-y^3\)
\(=\left(x-y\right)^3\) \(=1\)
Bài 4:
a) Cho x+y=1.Tính x3+y3+3xy
b) Cho x-y=1.Tính x3-y3-3xy
c) Cho x+y=1.Tính x3+y3+3xy(x2+y2)+6x2y2(x+y)
giúp mình với ,gấpppppppppppp
\(a,x+y=1\Leftrightarrow\left(x+y\right)^3=1\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\\ \Leftrightarrow x^3+y^3+3xy\cdot1=1\Leftrightarrow x^3+y^3+3xy=1\)
\(b,x^3-y^3-3xy\\ =x^3-3x^2y+3xy^2-y^3-3xy+3x^2y-3xy^2\\ =\left(x-y\right)^3-3xy\left(x-y-1\right)\\ =1^3-3xy\left(1-1\right)=1-0=1\)
\(c,x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\\ =\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\\ =x^2-xy+y^2+3xy-6x^2y^2+6x^2y^2\\ =x^2+2xy+y^2=\left(x+y\right)^2=1\)
Tính giá trị của biểu thức
D=x3-y3-3xy biết x-y-1=0
E=x3 + y3 biết x+y=5; x2+y2=17
F=x3-y3 biết x-y=4;x2+y2=26
`#3107.101107`
`D = x^3 - y^3 - 3xy` biết `x - y - 1 = 0`
Ta có:
`x - y - 1 = 0`
`=> x - y = 1`
`D = x^3 - y^3 - 3xy`
`= (x - y)(x^2 + xy + y^2) - 3xy`
`= 1 * (x^2 + xy + y^2) - 3xy`
`= x^2+ xy + y^2 - 3xy`
`= x^2 - 2xy + y^2`
`= x^2 - 2*x*y + y^2`
`= (x - y)^2`
`= 1^2 = 1`
Vậy, với `x - y = 1` thì `D = 1`
________
`E = x^3 + y^3` với `x + y = 5; x^2 + y^2 = 17`
`x + y = 5`
`=> (x + y)^2 = 25`
`=> x^2 + 2xy + y^2 = 25`
`=> 2xy = 25 - (x^2 + y^2)`
`=> 2xy = 25 - 17`
`=> 2xy = 8`
`=> xy = 4`
Ta có:
`E = x^3 + y^3`
`= (x + y)(x^2 - xy + y^2)`
`= 5 * [ (x^2 + y^2) - xy]`
`= 5 * (17 - 4)`
`= 5 * 13`
`= 65`
Vậy, với `x + y = 5; x^2 + y^2 = 17` thì `E = 65`
________
`F = x^3 - y^3` với `x - y = 4; x^2 + y^2 = 26`
Ta có:
`x - y = 4`
`=> (x - y)^2 = 16`
`=> x^2 - 2xy + y^2 = 16`
`=> (x^2 + y^2) - 2xy = 16`
`=> 2xy = (x^2 + y^2) - 16`
`=> 2xy = 26 - 16`
`=> 2xy = 10`
`=> xy = 5`
Ta có:
`F = x^3 - y^3`
`= (x - y)(x^2 + xy + y^2)`
`= 4 * [ (x^2 + y^2) + xy]`
`= 4 * (26 + 5)`
`= 4*31`
`= 124`
Vậy, với `x - y = 4; x^2 + y^2 = 26` thì `F = 124.`
Tính giá trị biểu thức:
a) A = 2 ( x 3 + y 3 ) – 3 ( x 2 + y 2 ) biết x + y = 1;
b) B = x 3 + y 3 + 3xy biết x + y = 1.
cho x+y=1 tính giá trị biểu thức x3 + 3xy + y3
Ta có:
\(x+y=1\Rightarrow3xy=3xy\left(x+y\right)\)
\(x^3+3xy+y^3\)
\(=x^3+3xy\left(x+y\right)+y^3\)
\(=\left(x+y\right)^3=1\)
Cho x+y=1. Tính B= x3+y3+3xy(x2+y2)+6x3y2+ 6x2y3
\(B=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\left(x+y\right)\)
\(=x^2-xy+y^2+3xy\left(1-2xy\right)+6x^2y^2=x^2-xy+y^2+3xy-6x^2y^2+6x^2y^2=x^2+2xy+y^2=\left(x+y\right)^2=1\)
a) Tìm x,y thỏa mãn x3+y3 +1=3xy tính P= (1+1/x)(1+1/y)(x+y)
b) Cho a+2b+c=0 Tính P= a2/2ab + 4b2/ac + c2/2ab
c) Cho x,y Thỏa mãn x3+y3+8=6xy Tính P=(1 + z/y)(1 + z/x)(x+y)
giúp mik với ạ cảm ơn nhiều nhiều!!!
Rút gọn các biểu thức: Q = x - y 3 + y + x 3 + y - x 3 – 3xy(x + y)
Q = x - y 3 + y + x 3 + y - x 3 – 3xy(x + y)
= x 3 – 3 x 2 y + 3x y 2 – y 3 + y 3 + 3 y 2 .x + 3y x 2 + x 3 + y 3 – 3 y 2 .x +3y x 2 – x 3 – 3 x 2 y – 3x y 2
= x 3 – 3 x 2 y + 3x y 2 – y 3 + y 3 + 3.x y 2 + 3 x 2 .y + x 3 + y 3 – 3x. y 2 + 3 x 2 .y – x 3 – 3 x 2 y – 3x y 2
= ( x 3 + x 3 – x 3 )+ ( - 3 x 2 y + 3 x 2 y+ 3 x 2 y – 3 x 2 y)+ (3x y 2 + 3x y 2 - 3x y 2 - 3x y 2 ) + (- y 3 + y 3 + y 3 )
= x 3 + 0 x 2 y + 0.x y 2 + y 3
= x 3 + y 3