cho x+2000/x-2000=y+2001/y-2001. chứng minh x/y=2000/2001
1) So sánh :
A = 2000/2001 + 2001/2002 và B = 2000+2001/2001+2002
2) Tìm cặp x,y thuộc Z, biết :
5/x + y/4 = 1/8
2) \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\)
Vì \(1-2y\) luôn là số lẻ nên \(1-2y\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow y=\left\{0;1;-2;3\right\}\)
\(\Rightarrow x\in\left\{40;-40;8;-8\right\}\)
Vậy các cặp số x,y thỏa mãn là \(\left(0;40\right);\left(1;-40\right);\left(-2;8\right);\left(3;-8\right)\)
Ta có :
\(B=\dfrac{2000+2001}{2001+2002}=\dfrac{2000}{2001+2002}+\dfrac{2001}{2001+2002}\)
Mặt khác :
\(\dfrac{2000}{2001}>\dfrac{2000}{2001+2002}\)
\(\dfrac{2001}{2002}>\dfrac{2001}{2001+2002}\)
\(\Leftrightarrow A=\dfrac{2000}{2001}+\dfrac{2001}{2002}>\dfrac{2000}{2001+2002}+\dfrac{2001}{2001+2002}=\dfrac{2000+2001}{2001+2002}=B\)
\(\Leftrightarrow A>B\)
Ta có: B =20002001+2002 +20012001+2002
Mặt khác: 20002001 >20002001+2002
20012002 >20012001+2002
Suy ra 20002001 +20012002 >20002001+2002 +20012001+2002
hay A> B
Vậy A > B.
x +3*1/2=(-2000+-2000+-2000)*(-2001+-2001+-2001)*.......*(2000+2000+2000)
TÌM X ?
1. Cho: \(\dfrac{3x-2y}{4}\) = \(\dfrac{2z-4x}{3}\) = \(\dfrac{4y-3z}{2}\)
CM: \(\dfrac{x}{2}\) = \(\dfrac{y}{3}\) = \(\dfrac{z}{4}\)
2. Cho: \(\dfrac{x+2000}{x-2000}\) = \(\dfrac{y+2001}{y-2001}\)
CM: \(\dfrac{x}{y}\) = \(\dfrac{2000}{2001}\)
Câu 2:
\(\dfrac{x+2000}{x-2000}=\dfrac{y+2001}{y-2001}\)
\(\Leftrightarrow\left(x+2000\right)\left(y-2001\right)=\left(x-2000\right)\left(y+2001\right)\)
\(\Leftrightarrow xy-2001x+2000y-4002000=xy+2001x-2000y-4002000\)
=>-2001x+2000y=2001x-2000y
=>-4002x=-4000y
=>2001x=2000y
hay x/y=2000/2001
Cho P(x)là 1 đa thức bậc ba với hệ số của x^3 là 1 số nguyên.
Biết rằng P(1999)=2000 , P(2000)=2001
Chứng minh rằng P(2001) - P(1998) là 1 hợp số
\(\hept{\begin{cases}x^2+y^2=1\\\sqrt[1999]{x}-\sqrt[1999]{y}=\left(\sqrt[2000]{y}-\sqrt[2000]{x}\right)\times\left(x+y+xy+2001\right)\end{cases}}\)
giải hệ pt \(\hept{\begin{cases}x^2+y^2=1\\\sqrt[1999]{x}-\sqrt[1999]{y}=\left(\sqrt[2000]{y}-\sqrt[2000]{x}\right)\left(x+y+xy+2001\right)\end{cases}}\)
xin lỗi bạn,mình mới lớp 6 nên ko làm đc.
Anh à, bài toán này em nghĩ anh nên đăng trên h thì sẽ được giải đáp tốt hơn đó. Xin lỗi, em mới học lớp 7.
giải hệ pt \(\begin{cases}x^2+y^2=1\\\sqrt[1999]{x}-\sqrt[1999]{y}=\left(\sqrt[2000]{y}-\sqrt[2000]{x}\right)\left(x+y+xy+2001\right)\end{cases}\)
Hic... thông cảm đi, đây chưa học bn ạ, chứ giúp đc mk giúp òi
cho P(x) la da thuc bac ba voi he so x nguyen biet P(1999)=2000 va P(2000)=2001 chung minh P(2001)-P(1998) la hop so
Giải phương trình sau:
\(\sqrt{\text{x - 2000}}\)+\(\sqrt{y-2001}\)+\(\sqrt{z-2002}\)=\(\dfrac{1}{2}\)(x+y+z)-3000