Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Toàn Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 2 2022 lúc 1:55

\(=2\sqrt[3]{3}+5\cdot\dfrac{3}{2}-7\cdot4\sqrt[3]{3}+\dfrac{1}{3}\sqrt[3]{3}+5\sqrt[3]{3}\)

\(=-\dfrac{62}{3}\sqrt[3]{3}+\dfrac{15}{2}\)

Cô gái thất thường (Ánh...
Xem chi tiết
ミ★kͥ-yͣeͫt★彡
17 tháng 9 2019 lúc 13:59

\(\frac{1}{\sqrt{25}+\sqrt{24}}+\frac{1}{\sqrt{24}+\sqrt{23}}+...+\frac{1}{\sqrt{2}+\sqrt{1}}=4\)

\(\Leftrightarrow\sqrt{25}-\sqrt{24}+\sqrt{24}-\sqrt{23}+...+\sqrt{2}-\sqrt{1}=4\)

\(\Leftrightarrow\sqrt{25}-\sqrt{1}=4\Leftrightarrow5-1=4\)(đúng)

Vậy \(\frac{1}{\sqrt{25}+\sqrt{24}}+\frac{1}{\sqrt{24}+\sqrt{23}}+...+\frac{1}{\sqrt{2}+\sqrt{1}}=4\)(đpcm)

ミ★kͥ-yͣeͫt★彡
17 tháng 9 2019 lúc 14:04

\(M=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{11-6\sqrt{2}}}}\)

\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{2-6\sqrt{2}+9}}}\)

\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{\left(3-\sqrt{2}\right)^2}}}\)

\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+3-\sqrt{2}}}\)

\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{6}}\)

\(=\sqrt{16+32\sqrt{6}}\)

Huong Ly Nguyen
Xem chi tiết
Thảo Uyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 10 2023 lúc 10:48

loading...  loading...  

wary reus
Xem chi tiết
Thao Van
18 tháng 8 2016 lúc 17:10

a, = \(\frac{\sqrt{7}-5}{2}-\frac{2\left(3-\sqrt{7}\right)}{4}+\frac{6\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}-\frac{5\left(4-\sqrt{7}\right)}{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}\)

Thao Van
18 tháng 8 2016 lúc 17:17

a, = \(=\frac{\sqrt{7}-5}{2}-\frac{3-\sqrt{7}}{2}+\frac{6\sqrt{7}+12}{7-4}-\frac{20-5\sqrt{7}}{16-7}=\frac{\sqrt{7}-5-3+\sqrt{7}}{2}+\frac{6\sqrt{7}+12}{3}-\frac{20-5\sqrt{7}}{9}\)

Thao Van
19 tháng 8 2016 lúc 14:15

b. = \(\frac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)}-\frac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)}=\frac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-\left(\sqrt{5}\right)^2}-\frac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-\left(\sqrt{5}\right)^2}\)

Linhh Khánh
Xem chi tiết
Nguyễn Minh Đăng
12 tháng 10 2020 lúc 12:55

a) \(\left(\frac{\sqrt{9}}{2}+\frac{\sqrt{1}}{2}-\sqrt{2}\right)\sqrt{2}\)

\(=\frac{3\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-2\)

\(=\frac{4\sqrt{2}}{2}-2=2\sqrt{2}-2\)

b) \(\left(\frac{\sqrt{8}}{3}-\sqrt{24}+\frac{\sqrt{50}}{3}\right)\sqrt{6}\)

\(=\frac{4\sqrt{3}}{3}-12+\frac{10\sqrt{3}}{3}\)

\(=\frac{14\sqrt{3}}{3}-12\)

c) \(\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{1}\right)\) (đã sửa đề)

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\sqrt{2}\)

\(=\left(3-1\right)\sqrt{2}\)

\(=2\sqrt{2}\)

d) \(\left(3\sqrt{2}+1\right)\left(\sqrt{3\sqrt{2}-1}\right)\)

\(=\sqrt{3\sqrt{2}+1}\cdot\left(\sqrt{3\sqrt{2}+1}\cdot\sqrt{3\sqrt{2}-1}\right)\)

\(=\sqrt{3\sqrt{2}+1}\cdot\sqrt{18-1}\)

\(=\sqrt{3\sqrt{2}+1}\cdot\sqrt{17}\)

...

Khách vãng lai đã xóa
trung dũng trần
Xem chi tiết
Nguyễn Thanh Hằng
4 tháng 8 2020 lúc 23:21

a/ \(\sqrt{5+\sqrt{24}}-\sqrt{2}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{2}=\left|\sqrt{3}+\sqrt{2}\right|-\sqrt{2}=\sqrt{3}+\sqrt{2}-\sqrt{2}=\sqrt{3}\)

b/ \(\frac{3-2\sqrt{3}}{\sqrt{3}-2}=\frac{\sqrt{3}\left(\sqrt{3}-2\right)}{\sqrt{3}-2}=\sqrt{3}\)

c/ \(\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}=-\sqrt{5}\)

d/ \(\frac{1}{1-\sqrt{2}}-\frac{1}{1+\sqrt{2}}=\frac{1+\sqrt{2}-1+\sqrt{2}}{\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}=\frac{2\sqrt{2}}{1-2}=-2\sqrt{2}\)

Nguyễn Hoàng Hải Dương
Xem chi tiết
Trần Đức Thắng
29 tháng 6 2015 lúc 13:21

\(\left(\sqrt{\frac{1}{7}}+\sqrt{\frac{16}{7}}+\sqrt{7}\right):\sqrt{7}=\left(\frac{\sqrt{7}}{7}+\frac{4\sqrt{7}}{7}+\sqrt{7}\right):\sqrt{7}\)

\(\left(\frac{5\sqrt{7}}{7}+\sqrt{7}\right):\sqrt{7}=\frac{5\sqrt{7}}{7}.\frac{1}{\sqrt{7}}+1=\frac{5}{7}+1=\frac{12}{7}\)

Dương Thanh Ngân
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 9 2020 lúc 22:37

\(a=\frac{1}{\sqrt{7-2\sqrt{6}}+1}+\frac{1}{\sqrt{7+2\sqrt{6}}-1}=\frac{1}{\sqrt{\left(\sqrt{6}-1\right)^2}+1}+\frac{1}{\sqrt{\left(\sqrt{6}+1\right)^2}-1}\)

\(=\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{6}}=\frac{2}{\sqrt{6}}=\frac{\sqrt{6}}{3}\)

Coi lại đề câu b, quy luật ở số hạng cuối cùng sai (nhìn 2 số hạng đầu 2 số dưới căn hơn kém nhau 4 đơn vị, số cuối lại chỉ hơn kém nhau 1 đơn vị)