Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lê phúc
Xem chi tiết
Akai Haruma
25 tháng 10 2021 lúc 19:40

a. 

$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$

b.

$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$

c.

$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$

d.

$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$

$=(x+1)(x^2-4x+1)$

Akai Haruma
25 tháng 10 2021 lúc 19:44

e.

$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$

$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$

f.

$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$

$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$

g.

$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$

$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$

$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$

$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$

h.

$x^6+2x^5+x^4-2x^3-2x^2+1$

$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$

$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$

TrịnhAnhKiệt
Xem chi tiết
Hiền Thương
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 5 2022 lúc 15:04

3: \(x^4-13x^2+36\)

\(=x^4-9x^2-4x^2+36\)

\(=\left(x^2-9\right)\left(x^2-4\right)\)

\(=\left(x-3\right)\left(x+3\right)\left(x-2\right)\left(x+2\right)\)

4: \(x^4+3x^2-2x+3\)

\(=x^4+x^3+3x^2-x^3-x^2-3x+x^2+x+3\)

\(=\left(x^2+x+3\right)\left(x^2-x+1\right)\)

5: \(x^4+2x^3+3x^2+2x+1\)

\(=x^4+x^3+x^2+x^3+x^2+x+x^2+x+1\)

\(=\left(x^2+x+1\right)^2\)

bfc,,
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 0:11

a: Ta có: \(x^2-4y^2-2x-4y\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

c: Ta có: \(x^3+2x^2y-x-2y\)

\(=x^2\left(x+2y\right)-\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)

d: Ta có: \(3x^2-3y^2-2\cdot\left(x-y\right)^2\)

\(=3\left(x-y\right)\left(x+y\right)-2\cdot\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)

\(=\left(x-y\right)\left(x+5y\right)\)

Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 0:16

e: Ta có: \(x^3-4x^2-9x+36\)

\(=x^2\left(x-4\right)-9\left(x-4\right)\)

\(=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)

f: Ta có: \(x^2-y^2-2x-2y\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

Cíuuuuuuuuuu
Xem chi tiết
LanAnk
14 tháng 8 2021 lúc 10:34

a) \(=\left(x+6y\right)\left(x-6y\right)-\left(x-6y\right)\)

\(=\left(x-6y\right)\left(x-6y-1\right)\)

b) \(=x\left(x^2-8x+16\right)\)

\(=x\left(x-4\right)^2\)

c) \(=2\left(x-y\right)^2-18\)

\(=2\left[\left(x-y\right)^2-3^2\right]\)

\(=2\left(x-y+3\right)\left(x-y-3\right)\)

Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 13:44

a: \(x^2-36y^2-x+6y\)

\(=\left(x-6y\right)\left(x+6y\right)-\left(x-6y\right)\)

\(=\left(x-6y\right)\left(x+6y-1\right)\)

b: \(x^3-8x^2+16x\)

\(=x\left(x^2-8x+16\right)\)

\(=x\left(x-4\right)^2\)

c: \(2x^2-4xy+2y^2-18\)

\(=2\left(x^2-2xy+y^2-9\right)\)

\(=2\left(x-y-3\right)\left(x-y+3\right)\)

d: \(3x^2-7x-10\)

\(=3x^2+3x-10x-10\)

\(=3x\left(x+1\right)-10\left(x+1\right)\)

\(=\left(x+1\right)\left(3x-10\right)\)

Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 13:46

e: Ta có: \(x^4-x^2-30\)

\(=x^4-6x^2+5x^2-30\)

\(=x^2\left(x^2-6\right)+5\left(x^2-6\right)\)

\(=\left(x^2-6\right)\left(x^2+5\right)\)

f: Ta có: \(x^2-xy-2y^2\)

\(=x^2-2xy+xy-2y^2\)

\(=x\left(x-2y\right)+y\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+y\right)\)

g: Ta có: \(x^4-13x^2y^2+4y^4\)

\(=x^4-4x^2y^2+4y^4-9x^2y^2\)

\(=\left(x^2-2y^2\right)^2-\left(3xy\right)^2\)

\(=\left(x^2-3xy-2y^2\right)\left(x^2+3xy-2y^2\right)\)

Cíuuuuuuuuuu
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 13:20

a: Ta có: \(x^2-36y^2-x+6y\)

\(=\left(x-6y\right)\left(x+6y\right)-\left(x-6y\right)\)

\(=\left(x-6y\right)\left(x+6y-1\right)\)

b: Ta có: \(16x-8x^2+x^3\)

\(=x\left(x^2-8x+16\right)\)

\(=x\left(x-4\right)^2\)

c: Ta có: \(2x^2-4xy+2y^2-18\)

\(=2\left(x^2-2xy+y^2-9\right)\)

\(=2\cdot\left[\left(x-y\right)^2-9\right]\)

\(=2\left(x-y-3\right)\left(x-y+3\right)\)

d: Ta có: \(3x^2-7x-10\)

\(=3x^2+3x-10x-10\)

\(=3x\left(x+1\right)-10\left(x+1\right)\)

\(=\left(x+1\right)\left(3x-10\right)\)

Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 13:24

e: Ta có: \(x^4-x^2-30\)

\(=x^4-6x^2+5x^2-30\)

\(=x^2\left(x^2-6\right)+5\left(x^2-6\right)\)

\(=\left(x^2-6\right)\left(x^2+5\right)\)

f: Ta có: \(x^2-xy-2y^2\)

\(=x^2-2xy+xy-2y^2\)

\(=x\left(x-2y\right)+y\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+y\right)\)

g: Ta có: \(x^4-13x^2y^2+4y^4\)

\(=x^4-4x^2y^2+4y^4-9x^2y^2\)

\(=\left(x^2-2y^2\right)^2-\left(3xy\right)^2\)

\(=\left(x^2-3xy-2y^2\right)\left(x^2-3xy+2y^2\right)\)

\(=\left(x^2-3xy-2y^2\right)\left(x^2-xy-2xy+2y^2\right)\)

\(=\left[x\left(x-y\right)-2y\left(x-y\right)\right]\left(x^2-3xy-2y^2\right)\)

\(=\left(x-y\right)\left(x-2y\right)\left(x^2-3xy-2y^2\right)\)

h: Ta có: \(\left(x^2-2x\right)^2-2\left(x^2-2x\right)-3\)

\(=\left(x^2-2x\right)^2-3\left(x^2-2x\right)+\left(x^2-2x\right)-3\)

\(=\left(x^2-2x\right)\left(x^2-2x-3\right)+\left(x^2-2x-3\right)\)

\(=\left(x^2-2x-3\right)\left(x^2-2x+1\right)\)

\(=\left(x-3\right)\left(x+1\right)\cdot\left(x-1\right)^2\)

Hanna Dayy
Xem chi tiết
Kiều Vũ Linh
15 tháng 12 2023 lúc 6:07

x⁴ - 2x³ + 2x - 1

= (x⁴ - 1) - (2x³ - 2x)

= (x² - 1)(x² + 1) - 2x(x² - 1)

= (x² - 1)(x² + 1 - 2x)

= (x - 1)(x + 1)(x² - 2x + 1)

= (x - 1)(x + 1)(x - 1)²

= (x - 1)³(x + 1)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 12 2018 lúc 17:42

a) (x - y)(x + y + 3).                    b) (x + y - 2xy)(2 + y + 2xy).

c) x 2 (x + l)( x 3  -  x 2  + 2).              d) (x – 1 - y)[ ( x   -   1 ) 2   +   ( x   -   1 ) y   +   y 2 ].

Lâm Minh Anh
Xem chi tiết
vantuongik
14 tháng 3 2018 lúc 8:51

\(3x^2+4x+1=3x^2+3x+x+1=\left(x+1\right)\left(3x+1\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 11 2017 lúc 16:17

x 4 - 2 x 3 - 2 x 2 - 2 x - 3 =   ( x 4   −   1 )   −   ( 2 x 3   +   2 x 2 )   −   ( 2 x   +   2 ) =   ( x 2   +   1   ) ( x 2   −   1 )   −   2 x 2 ( x   +   1 )   − 2 ( x   +   1 ) =   ( x 2   +   1 ) ( x   −   1 ) ( x   +   1 )   −   2 x 2 ( x   +   1 )   − 2 ( x   +   1 ) =   ( x   +   1 ) ( x 2   +   1 ) ( x   −   1 )   −   2 x 2   –   2 =   ( x   +   1 ) (   x 2   +   1 ) ( x   −   1 )   −   2 ( x 2   +   1 ) =   ( x   +   1 ) (   x 2   +   1 ) ( x   –   1   −   2 ) =   ( x   +   1 ) (   x 2   +   1 ) ( x   −   3 )

Capheny Bản Quyền
21 tháng 8 2021 lúc 17:34

x^4 - 2x^3 - 2x^2 - 2x - 3 

= x^4 - 1 - 2x^3 - 2x^2 - 2x -2 

= ( x - 1 ) ( x + 1 ) ( x^2 + 1 ) - 2x^2 ( x + 1 ) - 2 ( x + 1 ) 

= ( x + 1 ) [ ( x - 1 ) ( x^2 + 1 ) - 2x^2 - 2 ] 

= ( x + 1 ) [ ( x - 1 ) ( x^2 + 1 - 2 ( x^2 - 1 ) ] 

= ( x + 1 ) [ ( x - 1 ) ( x^2 + 1 ) - 2 ( x - 1 ) ( x + 1 ) ] 

= ( x + 1 ) ( x - 1 ) [ ( x^2 + 1 ) - 2 ( x +1 ) 

= ( x + 1 ) ( x - 1 ) ( x^2 +1 - 2x - 2 ) 

= ( x + 1 ) ( x - 1 ) ( x^2 - 2x - 1 ) 

Khách vãng lai đã xóa