a) Cho a2 + b2 + c2 + 3 = 2. (a + b + c)
CMR: a = b = c = 1
b) Cho (a + b + c)2 = 3. (ab + bc + ca)
CMR: a = b = c
c) Cho a + b + c = 0
CMR: a3 + b3 + c3 = 3abc
d) Cho a3 + b3 + c3 = 3abc
CMR: a + b + c = 0
b) \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (chuyển vế qua)
\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
Do VP >=0 với mọi a, b, c. Nên để đăng thức xảy ra thì a = b = c
c) a + b + c = 0 suy ra a = -(b+c)
\(a^3+b^3+c^3=b^3+c^3-\left(b+c\right)^3\)
\(=b^3+c^3-b^3-3bc\left(b+c\right)-c^3\)
\(=3bc.\left[-\left(b+c\right)\right]=3abc\) (đpcm)
a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Do VT >=0 với mọi a, b, c nên a = b = c 1
tí đăng tiếp
Cho (a+b+c)^2 = 3(ab+bc+ca). CMR: a=b=c
Cho a^3+b^3+c^3 = 3abc. CMR: a=b=c và a+b+c=0
Cho a+b+c=0. CMR: a^3+b^3+c^3 = 3abc
`(a+b+c)^2=3(ab+bc+ca)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`
`<=>a^2+b^2+c^2=ab+bc+ca`
`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
`VT>=0`
Dấu "=" xảy ra khi `a=b=c`
`a^3+b^3+c^3=3abc`
`<=>a^3+b^3+c^3-3abc=0`
`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`
`<=>(a+b)^3+c^3-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`
`**a+b+c=0`
`**a^2+b^2+c^2=ab+bc+ca`
`<=>a=b=c`
cho a b c >0 cmr a^3*b^2+b^3*c^2+c^3*a^2>a^2*b^3+b^2*c^3+c^2*a^3
giup
Cho a,b,c>0 Cmr a^3/(a^2+ab+b^2)+b^3/(b^2+bc+c^2)+c^3/(c^2+ac+a^2)>=(a+b+c)/3
cho \(a,b,c>0\).CMR
\(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ca+a^2}\ge\dfrac{a+b+c}{3}\)
Áp dụng BĐT AG-GM:
\(\dfrac{a^3}{a^2+ab+b^2}\ge\dfrac{a^3}{a^2+\dfrac{a^2+b^2}{2}+b^2}=\dfrac{a^3}{\dfrac{3}{2}\left(a^2+b^2\right)}\)
Cmtt \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^3}{b^2+bc+c^2}\ge\dfrac{b^3}{\dfrac{3}{2}\left(b^2+c^2\right)}\\\dfrac{c^3}{c^2+ac+a^2}\ge\dfrac{c^3}{\dfrac{3}{2}\left(c^2+a^2\right)}\end{matrix}\right.\)
Cộng vế theo vế của bất đẳng thức:
\(\Leftrightarrow VT\ge\dfrac{2}{3}\left(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\right)\)
Tiếp tục áp dụng BĐT AG-GM:
\(\dfrac{a^3}{a^2+b^2}=\dfrac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\dfrac{ab^2}{a^2+b^2}\ge a-\dfrac{ab^2}{2ab}=a-\dfrac{b}{2}\)
Cmtt\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^3}{b^2+c^2}\ge b-\dfrac{c}{2}\\\dfrac{c^3}{c^2+a^2}\ge c-\dfrac{a}{2}\end{matrix}\right.\)
Cộng vế theo vế
\(\Leftrightarrow VT\ge\dfrac{2}{3}\left(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\right)\\ \ge\dfrac{2}{3}\left(a-\dfrac{b}{2}+b-\dfrac{c}{2}+c-\dfrac{a}{2}\right)=\dfrac{2}{3}\left(a+b+c-\dfrac{a+b+c}{2}\right)=\dfrac{a+b+c}{3}\)
\(\dfrac{a^3}{a^2+ab+b^2}=a-\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^2.ab.b^2}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)
Tương tự và cộng lại ta sẽ có đpcm
cho các số a,b,c thỏa mãn: 1/a^3+1/b^3+1/c^3=3/abc cmr (a+b+c)^2= a^2+b^2+c^2
\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+c^3=\dfrac{3}{abc}\)
\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^3+\dfrac{1}{c^3}-\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-\dfrac{3}{abc}=0\)
\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2-\dfrac{1}{c}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\dfrac{1}{c^2}\right)-\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=0\)
\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-\dfrac{1}{ab}-\dfrac{1}{bc}-\dfrac{1}{ca}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b=c\\\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\end{matrix}\right.\)
Đề bài thiếu, cần thêm dữ liệu "a;b;c phân biệt"
Khi đó \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow ab+bc+ca=0\)
\(\Rightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=a^2+b^2+c^2\)
Cho a,b,c>0. CMR: a^3/b^2+b^3/c^2+c^3/a^2 >= a+b+c
Ta có:
\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\ge a+b+c\)
\(\Leftrightarrow\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}-a-b-c\ge0\)
\(\Leftrightarrow\frac{c^3-a^3}{a^2}+\frac{a^3-b^3}{b^2}+\frac{b^3-c^3}{c^2}\ge0\)
\(\Leftrightarrow\frac{c^5b^2-a^3b^2c^2+a^5c^2-b^3a^2c^2+b^5a^2-c^3a^2b^2}{a^2b^2c^2}\ge0\)
Dễ thấy: mẫu dương nên:
\(\frac{c^5b^2-a^3b^2c^2+a^5c^2-b^3a^2c^2+b^5a^2-c^3a^2b^2}{a^2b^2c^2}\ge0\)
\(\Leftrightarrow c^5b^2+a^5c^2+b^5a^2-a^2b^2c^2\left(a+b+c\right)\ge0\Leftrightarrow\)
\(\Leftrightarrow c^5b^2+a^5c^2+b^5a^2+c^5b^2+a^5c^2+b^5a^2-2a^2b^2c^2\left(a+b+c\right)\ge0\)
Chưa nghĩ ra tiếp :v
\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\)
\(=\left(\frac{a^3}{b^2}+a\right)+\left(\frac{b^3}{c^2}+b\right)+\left(\frac{c^3}{a^2}+c\right)-a-b-c\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}-a-b-c\ge2.\sqrt{\frac{a^3.a}{b^2}}+2.\sqrt{\frac{b^3.b}{c^2}}+2.\sqrt{\frac{c^3.c}{a^2}}-a-b-c\)\(=2\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)-a-b-c\)
Áp dụng BĐT Cauchy schwarz ta có:
\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}-a-b-c\ge2.\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)-a-b-c\)\(\ge2\left[\frac{\left(a+b+c\right)^2}{a+b+c}\right]-a-b-c=2\left(a+b+c\right)-a-b-c=a+b+c\)
( đpcm )
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)
Cho b^2=ac;c^2=bd. CMR a^3+b^3-c^3/b^3+c^3-d^3=(a+b-c/b+c-d)^3
Ta có : \(b^2=ab\Rightarrow\frac{a}{b}=\frac{b}{c}\) ; \(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
Theo t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b-c}{b+c-d}\)
Suy ra : \(\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b-c}{b+c-d}\right)^3\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\)( Đpcm )
cho b^2 = ac , c^2 = bd CMR : (a^3+b^3-c^3) / (b^3+c^3-d^3) =(a+b-c/b+c-d)^3
từ giả thiết:
b^2=ac;c^2=bd =>\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
ta có: \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)
lại có:
\(\frac{a^3}{b^3}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\left(2\right)\)
từ 1 và 2=>đpcm
b;c;d thoả mãn b 2 =ac; c - Giúp tôi giải toán - Hỏi đáp, thảo ... nho lik e vao do dug 10000000000000000000%
cho a/b=b/c=c/d CMR [a^3+b^3+c^3]/[b^3+c^3+d^3]=a/d
làm đc cau ni ko