Cho tam giác ABC vuông tại A. AB = 6cm, AC = 8cm, đcao AH, pgiac BD cắt AH tại I a) Cm tam giác ABH đồng dạng tam giác CBA b) Tính AD, DC c) Cm: AB.BI = BD.HB d) Tính diện tích tam giác BHI (làm mỗi phần d thôi nha ạ)
a: Xet ΔBHA vuông tại H và ΔBAC vuông tại A có
góc HBA chung
=>ΔBHA đồng dạng với ΔBAC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
BD là phân giác
=>DA/AB=DC/BC
=>DA/3=DC/5=8/8=1
=>DA=3cm; DC=5cm
c: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có
góc ABD=góc HBI
=>ΔBAD đồng dạng với ΔBHI
=>BA/BH=BD/BI
=>BA*BI=BD*BH
d: ΔBAD đồng dạng với ΔBHI
=>\(\dfrac{S_{BAD}}{S_{BHI}}=\left(\dfrac{BA}{BH}\right)^2=\left(\dfrac{6}{3.6}\right)^2=\dfrac{25}{9}\)
=>\(S_{BHI}=\dfrac{1}{2}\cdot6\cdot3:\dfrac{25}{9}=9\cdot\dfrac{9}{25}=\dfrac{81}{25}\)
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm, đường cao AH, phân giác BD cắt nhau tại I. a) Chứng minh: ABH đồng dạng với CBA. b) Tính BC, AH, AD và DC. c) Chứng minh: AB.BI = BD.HB. d) Tính diện tích BHI.
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc ABH chung
=>ΔABH đồng dạng với ΔCBA
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=8/8=1
=>AD=3cm; CD=5cm
c: Xét ΔBHI vuông tại H và ΔBAD vuông tại A có
góc HBI=góc ABD
=>ΔBHI đồng dạng với ΔBAD
=>BH/BA=BI/BD
=>BH*BD=BA*BI
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC), AH=6cm; BC=10cm. a) Tính diện tích tam giác ABC b) Tam giác ABH đồng dạng với tam giác CBA c) AB.AC=BC.AH
a) \(S_{ABC}=\dfrac{1}{2}.AH.BC=\dfrac{1}{2}.6.10=30\left(cm^2\right)\)
b) Xét \(\Delta ABH\) và \(\Delta CBA:\) Ta có: \(\left\{{}\begin{matrix}\angle ABCchung\\\angle AHB=\angle CAB=90\end{matrix}\right.\)
\(\Rightarrow\Delta ABH\sim\Delta CBA\left(g-g\right)\)
c) \(\Delta ABH\sim\Delta CBA\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\Rightarrow AH.BC=AB.AC\)
cho tam giác ABC vuông tại A có đường cao AH,đường phân giác BD cắt AH tại M. Cho tam giác ABH đồng dạng với tam giác CBA và tam giác BMH đồng dạng tam giác BDA
a)Cho BC=20cm,AB=12cm.Tính BH
b)Chứng minh MH:MA=DA:DC
Cho tam giác ABC vuông tại A, vẽ đường cao AH, biết AB = 8cm, AC = 6cm a) chứng minh rằng tam giác ABH đồng dạng với tam giác CBA b) Tính BC, AH, BH Mn giúp mk vs cảm ơn
a) xét tam giác ABH và tam giác CBA
có góc B chung
góc AGB= góc BAC=90
=>tam giác ABH đồng dạng tam giác CBA
=>\(\dfrac{AB}{CB}=\dfrac{AH}{CA}\)
b) áp dụng định lý pytago có
AB2+AC2=BC2
Thay AB=8;AC=6
=>BC=10
Theo câu a)có:\(\dfrac{AB}{CB}=\dfrac{AH}{CA}\)
thay số \(\dfrac{8}{10}=\dfrac{AH}{6}\)
=>AH=4,8
Cho tam giác ABC vuông tại a có HD là phân giác. Ah là chiều cao. Biết AB=5cm, AC=4cm. Tính tỉ số DB/DC, BC/CD. Chứng minh tam giác ABH đồng dạng với tam giác CBA. Tính BC, DC, DB
a: DB/DC=5/4
BC/CD=9/4
b: Xét ΔABH vuông tai H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng vói ΔCBA
b: \(BC=\sqrt{5^2+4^2}=\sqrt{41}\left(cm\right)\)
Cho tam giác ABC vuông tại a có HD là phân giác. Ah là chiều cao. Biết AB=5cm, AC=4cm. Tính tỉ số DB/DC, BC/CD. Chứng minh tam giác ABH đồng dạng với tam giác CBA. Tính BC, DC, DB
cho tam giác abc vuông tại a (ab<ac), đường cao ah (h thuộc bc). a) chứng minh rằng tam giác abh đồng dạng với tam giác cba ; b) trên tia hc, lấy hd=ha. từ d vẽ đường thẳng song song với ah cắt ac tại điểm e. chứng minh rằng ce.ca=cd.cb ; c) chứng minh rằng ae=ab ; d) gọi m là trung điểm của đoạn be, chứng minh rằng dae=ham
a) Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔABH∼ΔCBA(g-g)
mình mới làm đc 2 câu thôi chúc bạn học tốt
cho tam giác abc vuông tại a (ab<ac), đường cao ah (h thuộc bc).
a) chứng minh rằng tam giác abh đồng dạng với tam giác cba ;
b) trên tia hc, lấy hd=ha. từ d vẽ đường thẳng song song với ah cắt ac tại điểm e. chứng minh rằng ce.ca=cd.cb ;
c) chứng minh rằng ae=ab ;
d) gọi m là trung điểm của đoạn be, chứng minh rằng dae=ham
a) Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{ABH}\) là góc chung
Do đó: ΔABH\(\sim\)ΔCBA(g-g)
Cho tam giác ABC vuồn tại A, AB = 6cm, AC = 8cm, đường cao AH, phân giác BD cắt nhau tại I.
a, Chứng minh \(\Delta\)ABH đồng dạng \(\Delta\)CBA
b, Tính AD, DC
c, AB.BI = BD.HB
d, Tính diện tích tam giác BHI
Hình bạn tự vẽ nhé
a) Xét ΔABH và ΔCBA có :
^AHB = ^A = 900
^B chung
=> ΔABH ~ ΔCBA (g.g)
b) Vì ΔABC vuông tại A, áp dụng định lí Pythagoras ta có :
\(BC^2=AB^2+AC^2\)
<=> \(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔABC có BD là phân giác của ^B nên theo tính chất đường phân giác trong tam giác ta có : \(\dfrac{AD}{AB}=\dfrac{DC}{BC}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{AD}{AB}=\dfrac{DC}{BC}=\dfrac{AD+DC}{AB+BC}=\dfrac{AC}{AB+BC}=\dfrac{8}{6+10}=\dfrac{1}{2}\)
=> \(\left\{{}\begin{matrix}\dfrac{AD}{AB}=\dfrac{1}{2}\\\dfrac{DC}{BC}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=\dfrac{1}{2}AB=3cm\\DC=\dfrac{1}{2}BC=5cm\end{matrix}\right.\)
c) Xét ΔABD và ΔHBI có :
^A = ^BHI = 900
^ABD = ^HBI ( do BD là phân giác của ^B )
=> ^ABD ~ ΔHBI (g.g)
=> \(\dfrac{AB}{HB}=\dfrac{BD}{BI}=\dfrac{AD}{HI}\)=> AB.BI = HB.BD ( đpcm )
d) Từ \(\dfrac{AB}{HB}=\dfrac{BD}{BI}=\dfrac{AD}{HI}\)=> \(\dfrac{AB}{AD}=\dfrac{BD}{BI}=\dfrac{HB}{HI}=2\)
Ta có : \(S_{ABD}=\dfrac{1}{2}AB\cdot AD=\dfrac{1}{2}\cdot6\cdot3=9cm^2\)
mà ta có \(\dfrac{S_{ABD}}{S_{HBI}}=2^2=4\)=> SABD = 4SHBI
<=> 9 = 4SHBI <=> SHBI = 9/4cm2