Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hòa Nguyễn
Xem chi tiết
Pain Thiên Đạo
15 tháng 1 2018 lúc 23:25

Tìm Min thì còn tìm dc chứ Tìm max khó lắm ::::V

**#Khánh__Huyền#**
2 tháng 3 2018 lúc 20:46

ko hiểu pain nói j quên đây lp 8

dang thi thuy tien
Xem chi tiết
Hoàng Thị Hải Linh
Xem chi tiết
Đinh Thùy Linh
2 tháng 7 2016 lúc 23:16

Từ \(x^2-2xy+x-2y\le0.\)

\(\Leftrightarrow\left(x-2y\right)\left(x+1\right)\le0\)(1). Do x;y là các số thực không âm nên x + 1 >0 nên từ (1) => \(0\le x\le2y\)

Với mọi \(0\le x\le2y\)thì \(x^2+3x\le\left(2y\right)^2+3\left(2y\right)=4y^2+6y\) 

Do đó, \(M=x^2-5y^2+3x\le4y^2-5y^2+6y=-y^2+6y-9+9=-\left(y-3\right)^2+9\le9\forall y\)

Vậy GTLN của M là: 9 khi y = 3 và x = 2y = 6.

Nguyễn Tiến Hiệp
Xem chi tiết
Trần Quang Hoàn
Xem chi tiết
Nguyễn Đình Toàn
Xem chi tiết
Thắng Nguyễn
3 tháng 7 2016 lúc 12:51

\(x^2-2xy+x-2y\ge0\)

\(\Leftrightarrow x\left(x-2y\right)+x-2y\ge0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2y\right)\ge0\)

\(\Leftrightarrow x\ge2y\)( vì x là số thực không âm nên x+1 >0 )

\(\Leftrightarrow0\le y\le\frac{x}{2}\)

\(\Leftrightarrow y^2\le\frac{x^2}{4}\)( do 2 vế không âm nên bình phương hai vế )

\(\Rightarrow M\le\frac{x^2+3x-5x^2}{4}=\frac{-x^2}{4}+3x=9-\left(3-\frac{x}{2}\right)^2\le9\)

Vậy Mmax=9 <=> x=6, y =3

Kha Mi
Xem chi tiết
Big City Boy
Xem chi tiết
Akai Haruma
7 tháng 3 2021 lúc 21:37

** Bạn lưu ý lần sau viết đề bằng công thức toán!

Đề cần sửa thành $\leq \frac{4}{3}$

Lời giải:

Áp dụng BĐT AM-GM và Cauchy-Schwarz:

\(\frac{1}{2x^2+y^2+z^2}=\frac{1}{(x^2+z^2)+(x^2+y^2)}\leq \frac{1}{2xy+2xz}=\frac{1}{2}.\frac{1}{xy+xz}\leq \frac{1}{8}\left(\frac{1}{xy}+\frac{1}{xz}\right)\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:

\(\sum \frac{1}{2x^2+y^2+z^2}\leq \frac{1}{4}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)=\frac{x+y+z}{4xyz}\) $(1)$

Mặt khác:

$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\Rightarrow 4xyz=xy+yz+xz$

$\Rightarrow 16x^2y^2z^2=(xy+yz+xz)^2\geq 3xyz(x+y+z)$ (theo BĐT AM-GM)

$\Rightarrow x+y+z\leq \frac{16}{3}xyz (2)$

Từ $(1);(2)\Rightarrow \sum \frac{1}{2x^2+y^2+z^2}\leq \frac{4}{3}$ 

Dấu "=" xảy ra khi $x=y=z=\frac{3}{4}$

Nguyễn Việt Lâm
7 tháng 3 2021 lúc 21:38

\(\dfrac{1}{2x^2+y^2+z^2}=\dfrac{1}{x^2+y^2+x^2+z^2}\le\dfrac{1}{2xy+2xz}\le\dfrac{1}{8}\left(\dfrac{1}{xy}+\dfrac{1}{xz}\right)\)

Tương tự: \(\dfrac{1}{x^2+2y^2+z^2}\le\dfrac{1}{8}\left(\dfrac{1}{xy}+\dfrac{1}{yz}\right)\) ; \(\dfrac{1}{x^2+y^2+2z^2}\le\dfrac{1}{8}\left(\dfrac{1}{xz}+\dfrac{1}{yz}\right)\)

Cộng vế:

\(VT\le\dfrac{1}{4}\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)\le\dfrac{1}{4}.\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2=\dfrac{4}{3}\)

Đề bài sai

Đỗ Gia Huy
Xem chi tiết
fan FA
13 tháng 8 2016 lúc 13:56

1. Đặt x = √2.cosα và y = √2.sinα (với α trên [0,3π/2]) 
Ta có: P = 4√2(sinα + cosα)(1 - sinαcosα) - 6sinαcosα 
Đặt t = sinα + cosα = √2.sin(α + π/4) có |t| ≤ √2, nên sinαcosα = (t^2 - 1)/2 
suy ra P = -2√2.t^3 - 3t^2 + 6√2.t + 3. 
Đến đây bạn áp dụng P' = 0 rồi xét các gtrị cực trị. 

2. Đặt x = cosα và y = sinα (với α trên [0,3π/2]) 
Biến đổi P = (6sin2α + cos2α + 1) / (3 + sin 2α - cos 2α) 
Mặt khác lại có (cos2α)^2 + (sin 2α)^2 = 1. 
Ta áp dụng P' = 0 tiếp.