** Bạn lưu ý lần sau viết đề bằng công thức toán!
Đề cần sửa thành $\leq \frac{4}{3}$
Lời giải:
Áp dụng BĐT AM-GM và Cauchy-Schwarz:
\(\frac{1}{2x^2+y^2+z^2}=\frac{1}{(x^2+z^2)+(x^2+y^2)}\leq \frac{1}{2xy+2xz}=\frac{1}{2}.\frac{1}{xy+xz}\leq \frac{1}{8}\left(\frac{1}{xy}+\frac{1}{xz}\right)\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:
\(\sum \frac{1}{2x^2+y^2+z^2}\leq \frac{1}{4}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)=\frac{x+y+z}{4xyz}\) $(1)$
Mặt khác:
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\Rightarrow 4xyz=xy+yz+xz$
$\Rightarrow 16x^2y^2z^2=(xy+yz+xz)^2\geq 3xyz(x+y+z)$ (theo BĐT AM-GM)
$\Rightarrow x+y+z\leq \frac{16}{3}xyz (2)$
Từ $(1);(2)\Rightarrow \sum \frac{1}{2x^2+y^2+z^2}\leq \frac{4}{3}$
Dấu "=" xảy ra khi $x=y=z=\frac{3}{4}$
\(\dfrac{1}{2x^2+y^2+z^2}=\dfrac{1}{x^2+y^2+x^2+z^2}\le\dfrac{1}{2xy+2xz}\le\dfrac{1}{8}\left(\dfrac{1}{xy}+\dfrac{1}{xz}\right)\)
Tương tự: \(\dfrac{1}{x^2+2y^2+z^2}\le\dfrac{1}{8}\left(\dfrac{1}{xy}+\dfrac{1}{yz}\right)\) ; \(\dfrac{1}{x^2+y^2+2z^2}\le\dfrac{1}{8}\left(\dfrac{1}{xz}+\dfrac{1}{yz}\right)\)
Cộng vế:
\(VT\le\dfrac{1}{4}\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)\le\dfrac{1}{4}.\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2=\dfrac{4}{3}\)
Đề bài sai