Tìm x : \(3x-2^4.4^5=2.4^6.\frac{1}{2013^0}\)
cho x2-x-1=0 tính Q=\(\frac{x^6-3^5+3x^4-x^3+2013}{x^6-x^3-3x^2-3x+2013}\)
bạn phân tích đa thức thành nhân tử ở tử thức và mẫu thức sao cho chứa nhân tử chung là x2 - x - 1 . Còn lại 2013/2012
méo hiểu cái kiểu gì ?
45t grdddddddddddddd
Đề bị lỗi công thức rồi bạn. Bạn cần viết lại để được hỗ trợ tốt hơn.
1.cho a,b khác 0 và a khác b thỏa mãn 1/a+1/b=1/5
chung minh trong 2 so a^2-10b va b^2-10a có ít nhất một số dương
2.cho x^2-x-1=0
tinh gia tri bieu thuc Q= x^6-3x^5+3x^4-x^3+2013/x^6-x^3-3x^2-3x+2013
Giải phương trình:
1.\(\frac{x-5}{x-5}+\frac{x-6}{x-5}+\frac{x-7}{x-5}+...+\frac{1}{x-5}=4\left(x\in N\right)\)
2.\(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+...+\frac{1}{x^2+15x+56}=\frac{1}{14}\)
3.\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{x\left(x+2\right)}\right)=\frac{31}{16}\left(x\in N\right)\)
4.\(8\left(x^2+\frac{1}{x^2}\right)-34\left(x+\frac{1}{x}\right)+51=0\)
5.\(6x^4-5x^3-38x^2-5x+6=0\)
1)tính:[4(x-y)^5+2(x-y)^3-3(x-y^3]:(y-x)^2
2)tìm x:5x(x-2)+3x-6=0
3)tìm giá trị nhỏ nhất của biểu thức A=x^2-6x+2023
4)chứng minh rằng biểu thức sau ko phụ thuộc vào biến x
5)B=(3x+5)^2+(3x+5)^2-2(3x+5)(3x-5)
6)tính C=1^2-2^2+3^2-4^2+5^2-6^2+...+2013^2-2014^2+2015^2
Bài 1.
[ 4( x - y )5 + 2( x - y )3 - 3( x - y )2 ] : ( y - x )2 < sửa một lũy thừa rồi nhé >
= [ 4( x - y )5 + 2( x - y )3 - 3( x - y )3 ] : ( x - y )2
Đặt t = x - y
bthuc ⇔ ( 4t5 + 2t3 - 3t2 ) : t2
= 4t5 : t2 + 2t3 : t2 - 3t2 : t2
= 4t3 + 2t - 3
= 4( x - y )3 + 2( x - y ) - 3
Bài 2.
5x( x - 2 ) + 3x - 6 = 0
⇔ 5x( x - 2 ) + 3( x - 2 ) = 0
⇔ ( x - 2 )( 5x + 3 ) = 0
⇔ x - 2 = 0 hoặc 5x + 3 = 0
⇔ x = 2 hoăc x = -3/5
Bài 3.
A = x2 - 6x + 2023
= ( x2 - 6x + 9 ) + 2014
= ( x - 3 )2 + 2014 ≥ 2014 ∀ x
Dấu "=" xảy ra khi x = 3
=> MinA = 2014 <=> x = 3
Bài 4.
B = ( 3x + 5 )2 + ( 3x - 5 )2 - 2( 3x + 5 )( 3x - 5 )
= [ ( 3x + 5 ) - ( 3x - 5 ) ]2
= ( 3x + 5 - 3x + 5 )2
= 102 = 100
Vậy B không phụ thuộc vào x ( đpcm )
Bài 6.
C = 12 - 22 + 32 - 42 + 52 - 62 + ... + 20132 - 20142 + 20152
= ( 20152 - 20142 ) + ... + ( 52 - 42 ) + ( 32 - 22 ) + 1
= ( 2015 - 2014 )( 2015 + 2014 ) + ... + ( 5 - 4 )( 5 + 4 ) + ( 3 - 2 )( 3 + 2 ) + 1
= 4029 + ... + 9 + 5 + 1
= \(\frac{\left(4029+1\right)\left[\left(4029-1\right)\div4+1\right]}{2}\)
= 2 031 120
Tính
a,\(-2^3+2^2+\left(-1\right)^{2013}\)
b,\(\left(3^3\right)^2-\left[\left(-2\right)^3\right]^2-\left(-5\right)^2\)
c,\(2^3+3.\left(\frac{-1}{2013}\right)^0-\left(\frac{1}{2}\right)^2.4+\left[\left(-2\right)^2:\frac{1}{2}\right]\)
a.
\(-2^3+2^2+\left(-1\right)^{2013}=-8+4-1=-5\)
b.
\(\left(3^3\right)^2-\left[\left(-2\right)^3\right]^2-\left(-5\right)^2=27^2-\left(-8\right)^2-25=729-64-25=640\)
c.
\(2^3+3\times\left(-\frac{1}{2016}\right)^0-\left(\frac{1}{2}\right)^2\times4-\left[\left(-2\right)^2\div\frac{1}{2}\right]=8+3\times0-\frac{1}{4}\times4-\left(4\times2\right)=8+3-1-8=2\)
Chứng minh rằng :
\(1.4+2.4^2+3.4^3+4.4^4+5.4^5+6.4^6⋮3\)
Tìm x
a, (-3x-6)(x+5)>0
b, \(\frac{-x-2}{x+1}< 0\)
c ) \(\frac{x-1}{2x+5}>1\)
a: =>(3x+6)(x+5)<0
=>(x+2)(x+5)<0
=>-5<x<-2
b: \(\Leftrightarrow\dfrac{x+2}{x+1}>0\)
=>x>-1 hoặc x<-2
c: \(\Leftrightarrow\dfrac{x-1}{2x+5}-1>0\)
\(\Leftrightarrow\dfrac{x-1-2x-5}{2x+5}>0\)
\(\Leftrightarrow\dfrac{x+6}{2x+5}< 0\)
=>x>-5/2 hoặc x<-6
Giải các phương trình và bất phương trình sau:
\(a,\frac{2-x}{2011}-1=\frac{1-x}{2012}-\frac{x}{2013}\)
\(b,4x^2-4x-5\left|2x-1\right|-5=0\)
\(c,\left(3x^2+3x+4\right)^2-\left(x^2+x+4\right)^2>0\)