Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 7 2018 lúc 7:40

a) Rút gọn M = -6ab(-2b + a). Tính được M = 60.

b) Rút gọn M = 6xy – 7. Tính được N = -10.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 12 2018 lúc 9:53

Đáp án D

Bài toán trở thành: Tìm M nằm trên đường tròn giao tuyến của mặt cầu  (S) và mặt phẳng (P) sao cho KM lớn nhất

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 9 2017 lúc 14:19

Đáp án cần chọn là: A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 2 2017 lúc 14:11

Đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 4 2018 lúc 10:22

Thay a = -2, b = 4 vào biểu thức ta được:

( − 2 ) 2 + 2. ( − 2 ) .4 + 4 2 − 1 = 4 + ( − 16 ) + 16 − 1 = 3

Cù Thanh Bình
25 tháng 9 2021 lúc 9:39

`a^2 + 2ab+b^2-1`

`= (a+b)^2-1`

`=(a+b)^2 - 1^2`

`=(a+b-1)(a+b+1)`

`= (-2+4-1)(-2+4+1)`

`= 3`

Khách vãng lai đã xóa
da Ngao
Xem chi tiết
ILoveMath
7 tháng 11 2021 lúc 16:03

C

Tuấn Nguyễn
7 tháng 11 2021 lúc 16:14

c

Trần Anh Văn
Xem chi tiết
Trần Anh Văn
22 tháng 12 2020 lúc 6:15

ai đó trả lời hộ tớ với

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 11 2017 lúc 4:25

a) Rút gọn M = 279. Với m = 2017 giá trị của M = 279.

b) N = 8 a 3   -   27 b 3   =   ( 2 a ) 3   -   ( 3 b ) 3 = ( 2 a   -   3 b ) 3  + 3.2a.3b.(2a - 3b)

Thay a.b = 12;2a - 3b = 5 ta thu được N - 1205.

c) Cách 1: Từ a + b = 1 Þ a = 1 - b thế vào K.

Thực hiện rút gọn K, ta có kết quả K = 1.

Cách 2: Tìm cách đưa biêu thức về dạng a + b.

a 3   +   b 3   =   ( a   +   b ) 3  – 3ab(a + b) = 1 - 3ab;

6 a 2 b 2 (a + b) = 6 a 2 b 2  kết hợp với 3ab( a 2 + b 2 ) bằng cách đặt 3ab làm nhân tử chung ta được 3ab( a 2  + 2ab + b 2 ) = 3ab.

Thực hiện rút gọn K = 1.

Phương Hà
Xem chi tiết
Trần Tuấn Hoàng
7 tháng 3 2022 lúc 20:29

\(a+b=1\)

\(\Rightarrow a^2+2ab+b^2=1\)

\(\Rightarrow\left(a^2+b^2\right)+2ab=1\)

\(\Rightarrow2ab+2ab\le1\) (do \(a^2+b^2\ge2ab\))

\(\Rightarrow ab\le\dfrac{1}{4}\)

\(A=a\left(a^2+2b\right)+b\left(b^2-a\right)\)

\(=a^3+2ab+b^3-ab\)

\(=a^3+b^3+ab\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+ab\)

\(=1^3-3ab+ab=1-2ab\ge1-2.\dfrac{1}{4}=\dfrac{1}{2}\)

\(A_{min}=\dfrac{1}{2}\Leftrightarrow a=b=\dfrac{1}{2}\)

 

Ngô Bá Hùng
7 tháng 3 2022 lúc 20:32

\(a+b=1\Rightarrow a=\dfrac{1}{2}+x;b=\dfrac{1}{2}+y\left(x+y=0\right)\)

có: \(A=a\left(a^2+2b\right)+b\left(b^2-a\right)=a^3+b^3+ab=a^2+b^2\\ =\left(\dfrac{1}{2}+x\right)^2+\left(\dfrac{1}{2}+y\right)^2=\dfrac{1}{2}+x^2+y^2\ge\dfrac{1}{2}\)

\(\Rightarrow A_{min}=\dfrac{1}{2}\Leftrightarrow x=y=0\Leftrightarrow a=b=\dfrac{1}{2}\)