Cho tam giác ABC vuông tại A, p/g BD. kẻ DE vuông góc BC ( E thuộc BC )
C/M rằng:
a) tam giác ABD = tam giác EBD
b) BD là đường Trung trực AE
c) AD < DC
Cho tam giác ABC vuông tại A,phân giác BD.Kẻ DE vuông góc BC(E thuộc cạnh BC).Gọi F là giao điểm của AB và DE .Chứng minh rằng:
a)Chứng minh tam giác ABD= tam giác EBD
b) Chứng minh rằng BD là đường trung trực của AE
c)Chứng minh DC=DF
d)Chứng minh AD < DC
e)Chứng minh AE//FC
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
=>DF=DC
d: AD=DE
DE<DC
=>AD<DC
e: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
Cho tam giác ABC vuông tại A có BD là phân giác, kẻ DE vuông góc với BC (E thuộc BC). Gọi F là giao điểm của AB và DE. Chứng minh rằng:
a. Tam giác ABD = tam giác EBD b.BD là đường trung trực của AE
c. AD < DC d. E, D, F thẳng hàng và BD vuông góc với CF
e. 2(AD + AF)>CF
a, Xét tam giác ABD và tam giác EBD có:
góc BAD=BED(tam giác abc vuông, DE vuông góc BC)
BD=BD(chung)
góc ABD=EBD (BD là phân giác)
=)tam giác ABD=tam giác EBD(cạnh huyền-góc nhọn)
vậy.....
b,gọi giao của AE và BD là O
ta có tam giác ABD=tam giác EBD
=)AB=BE ( 2 cạnh tưng ứng)
xét tam giác ABO và tam giác EBO có:
AB=BE (cmt)
góc ABO=EBO ( BD là phân giác)
BO=BO ( chung)
=)tam giác ABO=EBO (c-g-c)
=)AO=OE ( 2 cạnh tương ứng)(1)
AOB=EOB( 2 góc tương ứng)
mà AOB+EOB=180 độ ( 2 góc kề bù)
=)AOB=EOB=180:2=90độ
=)BO vuông góc AE (2)
từ(1) và (2)=)BO là trung trực AE
vậy....
c, Ta có tam giác DEC vuông tại E
=)DC>DE ( trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà DE=DA ( tam giác ABD= tam giác EBD)
=)DC>DA
hay DA<DC
vậy....
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: Ta có: ΔBAD=ΔBED
nên BA=BE và DA=DE
Ta có: BA=BE
nên B nằm trên đường trung trực của AE\(\left(1\right)\)
Ta có: DA=DE
nên D nằm trên đường trung trực của AE\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AE
c: Ta có: DA=DE
mà DE<DC
nên DA<DC
d: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
Suy ra: AF=EC và DF=DC
Ta có: BA+AF=BF
BE+EC=BC
mà BA=BE
và AF=EC
nên BF=BC
Ta có: BF=BC
nên B nằm trên đường trung trực của CF\(\left(3\right)\)
Ta có: DF=DC
nên D nằm trên đường trung trực của CF\(\left(4\right)\)
Từ \(\left(3\right),\left(4\right)\) suy ra BD là đường trung trực của CF
hay BD\(\perp\)CF
Cho tam giác ABC vuông tại A. Kẻ BD là tia phân giác của ABC ( D thuộc AC ) Trên cạnh BC lấy điểm E sao cho BE = BA.
a) Chứng minh: tam giác ABD = EBD
b) Chứng minh: DE = AD và DE vuông góc với BC.
c) Chứng minh: BD là đường trung trực của đoạn AE.
d) Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh ba điểm F, D, E thẳng hàng.
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
Suy ra: DA=DE
Ta có: ΔABD=ΔEBD
nên \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE⊥BC
c: Ta có: BE=BA
nên B nằm trên đường trung trực của EA(1)
Ta có: DE=DA
nên D nằm trên đường trung trực của EA(2)
Từ (1) và (2) suy ra BD là đường trung trực của EA
a: Xét ΔABD và ΔEBD có
BA=BE
ˆABD=ˆEBDABD^=EBD^
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
Suy ra: DA=DE
Ta có: ΔABD=ΔEBD
b) c/m BD vuông góc AE tại trung điểm I của AE
c) kẻ AH vuông góc BC ( H thuộc BC ) . C/m AH // DE
d) so sánh góc ABC và góc EDC
e) gọi K là giao điểm ED và BA , M là trung điểm của KC . C/m B,D,M thẳng hàng
Đề khó quá nên nhờ mọi người nha
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
=>DA=DE
=>D nằm trên đường trung trực của AE(1)
ta có: BA=BE
=>B nằm trên trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD\(\perp\)AE tại trung điểm của AE
c: Ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
Ta có: AH\(\perp\)BC
DE\(\perp\)BC
Do đó: AH//DE
d: Ta có: \(\widehat{EDC}+\widehat{ACB}=90^0\)(ΔEDC vuông tại E)
\(\widehat{ABC}+\widehat{ACB}=90^0\)(ΔABC vuông tại A)
Do đó: \(\widehat{EDC}=\widehat{ABC}\)
e: Xét ΔDAK vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADK}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAK=ΔDEC
=>AK=EC và DK=DC
Ta có: BA+AK=BK
BE+EC=BC
mà BA=BE và AK=EC
nên BK=BC
=>B nằm trên đường trung trực của KC(3)
Ta có: DK=DC
=>D nằm trên đường trung trực của KC(4)
Ta có: MK=MC
=>M nằm trên đường trung trực của KC(5)
Từ (3),(4),(5) suy ra B,D,M thẳng hàng
Cho tam giác ABC vuông tại a, đường phân giác BD, kẻ DE vuông góc với BC (E thuộc BC). Chứng minh:
a)Tam giác ABD=tam giác EBD;
b)so sánh DA và DB;
c)BD vuông góc với AE;
d)AD<DC;
e)Kẻ CK vuông góc với BD(K thuộc BD). Chứng minh ED,CK,AB cùng đi qua một điểm.
Cho tam giác ABC vuông tại A. Kẻ đường phân giác BD, kẻ DE vuông góc với BC (E thuộc BC). a) Chứng minh rằng: BD là trung trực của AE và AD < DC. b) Tia ED cắt tia BA tại F. Chứng minh: BD vuông góc với CF và AE // CF.c) Tia BD cắt FC tại G. Chứng minh rằng D cách đều ba cạnh của tam giác AEG. d) Lấy M và N tương ứng di động trên BF và BC sao cho BM + BN = BC. Chứng minh rằng trung điểm I của MN luôn nằm trên một đường thẳng cố định.
Chỉ cần làm phần c,d
c) -△ABG và △JBG có: \(AB=BE;\widehat{ABG}=\widehat{JBG};BG\) là cạnh chung.
\(\Rightarrow\)△ABG=△JBG (c-g-c).
\(\Rightarrow\widehat{AGB}=\widehat{JGB}\) nên GB là tia phân giác góc AGE.
AE//CF \(\Rightarrow\widehat{BAE}=\widehat{AFG}\).
-△BFC cân tại B mà BG là đường cao nên BG cũng là trung tuyến.
\(\Rightarrow\)G là trung điểm CF.
-△ACF vuông tại A có: AG là trung tuyến.
\(\Rightarrow AG=FG=\dfrac{1}{2}BC\Rightarrow\)△AFG cân tại G.
\(\Rightarrow\widehat{AFG}=\widehat{FAG}\) mà \(\widehat{BAE}=\widehat{AFG}\Rightarrow\widehat{BAE}=\widehat{FAG}\).
\(\widehat{EAC}=90^0-\widehat{BAE}=90^0-\widehat{FAG}=\widehat{GAC}\).
\(\Rightarrow\)AC là tia phân giác góc EAG.
-△AEG có: 2 đg phân giác AC và GB cắt nhau tại D.
\(\Rightarrow\)D là điểm cách đều 3 cạnh của △AEG (hay còn gọi là giao của 3 đg phân giác, tâm đường tròn nội tiếp tam giác).
d) -Cho mình xin sử dụng t/c của lớp 8, mình sẽ c/m sau (đường trung bình của tam giác).
\(BM+BN=BC\) mà \(BM+MF=BF=BC\Rightarrow MF=BN\).
-Gọi H là trung điểm BC. Qua M kẻ đường thẳng song song với IH cắt BC tại J.
-△NMJ có: IH//MJ, I là trung điểm MN.
\(\Rightarrow\)H là trung điểm NJ nên \(NH=HJ\).
\(CJ=CH-HJ=BH-NH=BN\)
\(\Rightarrow CJ=MF\Rightarrow BM=BJ\Rightarrow\)△MBJ cân tại B.
\(\Rightarrow\widehat{BMJ}=\dfrac{180^0-\widehat{MBJ}}{2}\) mà \(\widehat{BAE}=\dfrac{180^0-\widehat{MBJ}}{2}\)
\(\Rightarrow\widehat{BMJ}=\widehat{BAE}\Rightarrow\)MJ//AE.
-Ta dễ dàng thấy rằng điểm A,D,E cố định \(\Rightarrow\)AE, MJ cố định.
\(\Rightarrow\)Trung điểm I của MN luôn nằm trên 1 đg thẳng cố định (đg thẳng MJ).
Cho tam giác ABC vuông tại A, đường cao BD. Kẻ DE vuông góc BC ( E thuộc BC ). Trên tia đối của tia AB lấy điểm F sao cho AF= CE
a) c/m tam giác ABD = tam giác EBD
b) BD là đường trung trực của đoạn thẳng AE
c ) AD<DC
d) góc ADF = góc EDC và E, D, F thẳng hàng
Cho tam giác abc vuông tại A có BD là phân giác, kẻ DE vuông góc với BC(E thuộc BC). Gọi F là giao điểm của AB và ĐE. Chứng minh rằng a) tam giác ABD = tam giác EBD b) BĐ là đường trung trực của AE c) BD vuông góc FC d) AE + FC < 2AC
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: Xét ΔBFC có
FE,CA là đường cao
FE cắt CA tại D
=>D là trực tâm
=>BD vuông góc FC
Cho tam giác ABC vuông tại A,đường phân giác BD.Kẻ DE vuông góc với BC(E thuộc BC).Trên tia đối của tia AB lấy điểm F sao cho AF=CE.Chứng minh:
a) Tam giác ABD=tam giác EBD
b) AB = BE
c) E,D,F thẳng hàng
d) BD là đường trung trực của đoạn thẳng fc
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED