HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho ∆ABC cân tại A có hai đường trung tuyến BD và CE cắt nhau tại G.
a) Chứng minh ∆ADB và ∆AEC.
b) Chứng minh ∆GBC là tam giác cân.
c) Chứng minh GD+GE>1/2BC
Cho tam giác ABC vuông tại A, đường phân giác BD (D∈AC). Từ D kẻ DH vuông góc với BC.
a) Chứng minh ΔABD = ΔHBD.
b) So sánh AD và DC.
c) Gọi K là giao điểm của đường thẳng AB và DH, I là trung điểm của KC. Chứng minh 3 điểm B, D, I thẳng hàng
Cho ABC vuông tại A, gọi M là trung điểm của BC. Trên tia đối của tia
MA lấy điểm D sao cho MD = MA. Chứng minh rằng :
a) AMB = DMC
b) AB // CD
c) BD vuông góc với CD