M=[(1/a^2 +1)*(1/a^2+2a+1+2/(a+1)^2)*1/a +1)]: a-1/a^3
Cho \(M=\frac{1}{a^2-2a+1}-\left(\frac{a}{a^2-1}-\frac{1}{a^3-a}\right):\frac{a^2-2a+1}{a+a^3}\). Hãy rút gọn M.
\(\text{GIẢI :}\)
ĐKXĐ : \(a\ne\pm1\).
\(M=\frac{1}{a^2-2a+1}-\left(\frac{a}{a^2-1}-\frac{1}{a^3-a}\right):\frac{a^2-2a+1}{a+a^3}\)
\(=\frac{1}{a^2-2a+1}-\left(\frac{a}{a^2-1}-\frac{1}{a\left(a^2-1\right)}\right):\frac{a^2-2a+1}{a+a^3}\)
\(=\frac{1}{a^2-2a+1}-\left(\frac{a^2}{a\left(a^2-1\right)}-\frac{1}{a\left(a^2-1\right)}\right):\frac{a^2-2a+1}{a+a^3}\)
\(=\frac{1}{a^2-2a+1}-\frac{a^2-1}{a\left(a^2-1\right)}:\frac{\left(a-1\right)^2}{a\left(1+a^2\right)}\)
\(=\frac{1}{a^2-2a+1}-\frac{\left(a-1\right)^2}{a\left(a^2-1\right)}\cdot\frac{a\left(a^2+1\right)}{1+a^2}\)
\(=\frac{1}{a^2-2a+1}-\frac{\left(a-1\right)^2}{1+a^2}=\frac{-a^2}{\left(a-1\right)^2}\).
CHO BIỂU THỨC:
M = \(\left[\frac{3\left(a+2\right)}{a^3+a^2+a+1}+\frac{2a^2-a-10}{a^3-a^2+a-1}\right]:\left[\frac{5}{a^2+1}+\frac{3}{2a+2}-\frac{3}{2a-2}\right]\)
a) rút gọn M
b) nếu a = 2 thì M = ?
c) nếu M = 0 thì a = ?
Cho biểu thức :
M=(1/a^2+1) .1/a^2+2a+2(a+1)^3 .(1/a+1):a-1/a-3
a)Rút gọn M;
b)Tìm giá trị của a để M=4
c) Tìm giá trị của a để M>0
B1:Tìm a để biểu thức sau có nghĩa
1.\(\sqrt{a^2+2a-3}\)
2.\(\sqrt{\dfrac{\left(a-1\right)^3}{a^2}}\)
3.\(\sqrt{\dfrac{a^2+1}{2a}}\)
4.\(\sqrt{\dfrac{a-1}{2a+1}}\)
1) Để biểu thức có nghĩa thì \(a^2+2a-3\ge0\)
\(\Leftrightarrow\left(a+3\right)\left(a-1\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-1\ge0\\a+3\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ge1\\a\le-3\end{matrix}\right.\)
2) Để biểu thức có nghĩa thì \(\left\{{}\begin{matrix}a-1\ge0\\a\ne0\end{matrix}\right.\Leftrightarrow a\ge1\)
3) Để biểu thức có nghĩa thì \(a>0\)
4) Để biểu thức có nghĩa thì \(\left\{{}\begin{matrix}a\ne-\dfrac{1}{2}\\\left[{}\begin{matrix}a-1\ge0\\2a+1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\ne-\dfrac{1}{2}\\\left[{}\begin{matrix}a\ge1\\a< -\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ge1\\a< -\dfrac{1}{2}\end{matrix}\right.\)
1) Để biểu thức có nghĩa \(\Rightarrow a^2+2a-3\ge0\Rightarrow\left(a-1\right)\left(a+3\right)\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a-1\ge0\\a+3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}a-1\le0\\a+3\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a\ge1\\a\le-3\end{matrix}\right.\)
2) Để biểu thức có nghĩa \(\Rightarrow\dfrac{\left(a-1\right)^3}{a^2}\ge0\Rightarrow\left\{{}\begin{matrix}\left(a-1\right)^3\ge0\\a\ne0\end{matrix}\right.\Rightarrow a\ge1\)
3) Để biểu thức có nghĩa \(\Rightarrow\dfrac{a^2+1}{2a}\ge0\Rightarrow2a>0\Rightarrow a>0\)
4) Để biểu thức có nghĩa \(\Rightarrow\dfrac{a-1}{2a+1}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a-1\ge0\\2a+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}a-1\le0\\2a+1< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a\ge1\\a< -\dfrac{1}{2}\end{matrix}\right.\)
1,Rút gọn
A=1+(\(\dfrac{2a+\sqrt{a}-1}{1-a}\)-\(\dfrac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\)) x \(\dfrac{a-\sqrt{a}}{2\sqrt{a}-1}\)
2,Cho hàm số bậc nhất y=(2-3m)x+m2 +1(đồ thị d)
Xác định m để d cắt đường thẳng y=x-2 tại điểm có tung độ là -3
\(1,\\ A=1+\left[\dfrac{\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\right]\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\\ A=1+\left[\dfrac{2\sqrt{a}-1}{1-\sqrt{a}}-\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\right]\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\\ A=1+\dfrac{\left(2\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)-\left(2\sqrt{a}-1\right)\left(a+\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(A=1+\dfrac{\left(2\sqrt{a}-1\right)\left(a+\sqrt{a}+1-a-\sqrt{a}\right)}{-\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\\ A=1+\dfrac{-\sqrt{a}\left(2\sqrt{a}-1\right)}{\left(a+\sqrt{a}+1\right)\left(2\sqrt{a}-1\right)}\\ A=1-\dfrac{\sqrt{a}}{a+\sqrt{a}+1}=\dfrac{a+\sqrt{a}+1-\sqrt{a}}{a+\sqrt{a}+1}=\dfrac{a+1}{a+\sqrt{a}+1}\)
2.
Vì 2 đt cắt tại điểm có tung độ -3
\(\Leftrightarrow y=-3\Leftrightarrow\left\{{}\begin{matrix}\left(2-3m\right)x+m^2+1=-3\\x-2=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3m-2+m^2+1+3=0\\x=-1\end{matrix}\right.\\ \Leftrightarrow m^2+3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-2\end{matrix}\right.\)
(2)
1) rút gọn: A= \(1+\left(\dfrac{2a+\sqrt{a}-1}{1-a}-\dfrac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right).\dfrac{a-\sqrt{a}}{2\sqrt{a}-1}\)
2) cho hàm số bậc nhất \(y=\left(2-3m\right)x+m^2+1\)(d). xác định m để (d) cắt đường thẳng \(y=x-2\) tại điểm có tung độ là -3
giúp mk vs ạ mk cần gấp
1) (2+a)(2-a)(4+2a+a^2)(a^2-2a+4) 2)(x-2)^3 - x(x+1)(x-1) + 6x(x-3) 3) (x+1)^3 - ( x - 1)(x^2+x+1) -3x (x+1) áp dụng bất đẳng thức đi ạ
1: =(8+a^3)(8-a^3)=64-a^6
2: =x^3-6x^2+12x-8-x(x^2-1)+6x^2-18x
=x^3-6x-8-x^3+x
=-5x-8
3: =x^3+3x^2+3x+1-x^3+1-3x^2-3x
=2
Cho biểu thức: \(\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\) Tìm a để M>= 4/5
bài 1:Cho M=(1+$\frac{a}{a^{2}+1}$) :($\frac{a}{a^{2}-1}$-$\frac{2a}{a^{3}-a^{2}+a-1}$ )
a)tìm điều kiện xác định
b)rút gọn M
bài 2:cho f(x)=2$x^{2}$+ax+1 và g(x)=x-3
tìm a để f(x):g(x) dư 4