\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot12}\)
a)A=\(\frac{1}{1\cdot3\cdot5}+\frac{1}{3\cdot5\cdot7}+\frac{1}{5\cdot7\cdot9}+...+\frac{1}{25\cdot27\cdot29}\)
b)\(\left(\frac{1}{1\cdot101}+\frac{1}{2\cdot102}+...+\frac{1}{10\cdot110}\right)\cdot x=\frac{1}{1.11}+\frac{1}{2\cdot12}+...+\frac{1}{100\cdot110}\)
a) \(A=\frac{1}{1\cdot3\cdot5}+\frac{1}{3\cdot5\cdot7}+...+\frac{1}{25\cdot27\cdot29}\)
\(\Rightarrow4A=\frac{4}{1\cdot3\cdot5}+\frac{4}{3\cdot5\cdot7}+...+\frac{4}{25\cdot27\cdot29}\)
\(\Rightarrow4A=\frac{1}{1\cdot3}-\frac{1}{3\cdot5}+\frac{1}{3\cdot5}-\frac{1}{5\cdot7}+...+\frac{1}{25\cdot27}-\frac{1}{27\cdot29}\)
\(\Rightarrow4A=\frac{1}{1\cdot3}-\frac{1}{27\cdot29}=\frac{1}{3}-\frac{1}{783}=\frac{261}{783}-\frac{1}{783}=\frac{260}{783}\)
\(\Rightarrow A=\frac{\frac{260}{783}}{4}=\frac{65}{783}\)
b) \(\left(\frac{1}{1\cdot101}+\frac{1}{2\cdot102}+...+\frac{1}{10\cdot110}\right)x=\frac{1}{1\cdot11}+\frac{1}{2\cdot12}+...+\frac{1}{100\cdot110}\)
\(\Rightarrow100\cdot\left(\frac{1}{1\cdot101}+\frac{1}{2\cdot102}+...+\frac{1}{10\cdot110}\right)x=100\cdot\left(\frac{1}{1\cdot11}+\frac{1}{2\cdot12}+...+\frac{1}{100\cdot110}\right)\)
\(\Rightarrow\left(\frac{100}{1\cdot101}+\frac{100}{2\cdot102}+...+\frac{100}{10\cdot110}\right)x=10\cdot\left(\frac{10}{1\cdot11}+\frac{10}{2\cdot12}+...+\frac{10}{100\cdot110}\right)\)
\(\Rightarrow\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}\right)x=10\cdot\left(1-\frac{1}{10}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110}\right)\)
\(\Rightarrow\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}\right)x=10\cdot\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}\right)\)
\(\Rightarrow x=10\cdot\)
\(\frac{4}{1\cdot3\cdot5}+\frac{4}{3\cdot5\cdot7}+\frac{4}{5\cdot7\cdot9}+\frac{4}{7\cdot9\cdot11}+\frac{4}{9\cdot11\cdot13}\)
giúp mk nha các bn
\(\frac{4}{1\cdot3\cdot5}+\frac{4}{3\cdot5\cdot7}+\frac{4}{5\cdot7\cdot9}+\frac{4}{7\cdot9\cdot11}+\frac{4}{9\cdot11\cdot13}\)
\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{9.11}-\frac{1}{11.13}\)
\(=\frac{1}{1.3}-\frac{1}{11.13}\)
\(=\frac{1}{3}-\frac{1}{143}\)
\(=\frac{140}{429}\)
\(\frac{1}{10\cdot9}-\frac{1}{9\cdot8}-\frac{1}{8\cdot7}-\frac{1}{7\cdot6}-\frac{1}{6\cdot5}-\frac{1}{5\cdot4}-\frac{1}{4\cdot3}-\frac{1}{3\cdot2}-\frac{1}{2\cdot1}\)
Ta có : \(\frac{1}{10.9}-\frac{1}{9.8}-.....-\frac{1}{2.1}\)
\(=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.8}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\frac{8}{9}=\frac{-79}{90}\)
Tính nhanh:
A = \(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{2001\cdot2003}+\frac{2}{2003\cdot2005}\)
A=1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+...+1/2001-1/2003+1/2003-1/2005
A=1-1/2005
A=2004/2005
Đúng luôn
\(\sqrt[2]{4\cdot9\frac{8}{8}+\frac{48\cdot11+5}{1\cdot\frac{814}{5+\frac{6145}{1\cdot\frac{821}{614}}}}}2548-\frac{8452}{14\cdot\frac{58}{96\cdot\frac{41}{\frac{24}{1\cdot\frac{975545}{1421+\frac{84874}{\frac{1+2+3+4+5+6+7+8+9\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7\cdot8\cdot9}{2\cdot\frac{2}{1}}}}}}}}\)
\(\frac{\frac{3}{5}\cdot7^2-3,5^6+\frac{3}{5}\cdot3^9}{\frac{3}{4}\cdot7^2-\frac{3}{4}\cdot5^7+\frac{3}{4}\cdot3^9}\)
\(A=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+\frac{1}{5\cdot5}+\frac{1}{6\cdot6}+\frac{1}{7\cdot7}+\frac{1}{8\cdot8}+\frac{1}{9\cdot9}\)
HÃY CHỨNG MINH :
\(\frac{2}{5}< A< \frac{8}{9}\)
Ta có :
\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\Rightarrow A< \frac{8}{9}\)(1)
Lại có \(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\Rightarrow A>\frac{2}{5}\)(2)
Từ (1) (2) => \(\frac{2}{5}< A< \frac{8}{9}\left(\text{ĐPCM}\right)\)
Bài làm :
Ta có :
\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A>\frac{1}{2}-\frac{1}{10}\)
\(A>\frac{2}{5}\left(1\right)\)
Ta cũng có :
\( A=\frac{1}{2.2}+\frac{1}{3.3}+......+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{8.9}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-......+\frac{1}{8}-\frac{1}{9}\)
\(A< 1-\frac{1}{9}\)
\(A< \frac{8}{9}\left(2\right)\)
\(\text{Từ (1) và (2) }\Rightarrow\frac{2}{5}< A< \frac{8}{9}\)
=> Điều phải chứng minh
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(S=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+\frac{1}{5\cdot5}+\frac{1}{6\cdot6}+\frac{1}{7\cdot7}+\frac{1}{8\cdot8}+\frac{1}{9\cdot9}\)
HÃY CHỨNG MINH \(\frac{2}{5}< S< \frac{7}{8}\)
Bài làm:
Ta có: \(S=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}\)
\(>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)\(\Rightarrow\frac{2}{5}< S\)
Cái còn lại tự CM
\(A=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+\frac{1}{5\cdot5}+\frac{1}{6\cdot6}+\frac{1}{7\cdot7}+\frac{1}{8\cdot8}+\frac{1}{9\cdot9}\)
HÃY CHỨNG MINH \(\frac{2}{5}< S< \frac{7}{8}\)
A= 1/2.2 + 1/3.3 + 1/4.4 + 1/5.5 + 1/6.6 + 1/7.7 + 1/8.8 + 1/9.9
Vì 1/2.2 > 1/2.3; 1/3.3 > 1/3.4 ; 1/5.5 > 1/5.6;...... nên
1/2.2 +1/3.3 + 1/4.4 + 1/5.5 + 1/6.6 + 1/7.7 + 1/8.8 + 1/9.9 > 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10
Ta có: 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10
= 1/2-1/3 + 1/3 -1/4 + 1/4-1/5+...+1/9-1/10
= 1/2- 1/10
= 2/5
Vì A < 2/5 mà 2/5 <7/8 nên 2/5 < A < 7/8
Vậy....