Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thiên Bình
Xem chi tiết
Mike
30 tháng 5 2019 lúc 14:27

1/1*4 + 1/4*7 + 1/7*10 + ... + 1/97*100

= 1/3(3/1*4 + 3/4*7 + 3/7*10 + ... + 3/97*100)

= 1/3(1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/97 - 1/100)

= 1/3(1 - 1/100)

= 1/3*99/100

= 33/100

trả lời 

=33/100

chúc bn

học tốt

Nhii
Xem chi tiết
Edogawa Conan
27 tháng 3 2017 lúc 17:58

1.

=0+0-0-0+0+0-0-0+0

=0

2.

\(=2\left(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{94.97}+\dfrac{1}{97.100}\right)\)

\(=2.\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.9}+...+\dfrac{3}{97.100}\right)\)

\(=\dfrac{2}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)

\(=\dfrac{2}{3}.\left(1-\dfrac{1}{100}\right)\)

\(=\dfrac{2}{3}.\dfrac{99}{100}=\dfrac{2.99}{3.100}=\dfrac{1.33}{1.50}=\dfrac{33}{50}\)

Edogawa Conan
27 tháng 3 2017 lúc 18:06

bởi vì các số nào nhân với 0 cũng bằng 0 em ạ

hoặc dùng cách sau :

=0.(1+2-3-4+5+6-7-8+9)

=0.1

=0

Hằng Nguyễn 5e
Xem chi tiết
Nhii
Xem chi tiết
Lê Thái Khả Hân
27 tháng 3 2017 lúc 18:27

1. 0,1 + 0,2 - 0,3 - 0,4 + 0,5 + 0,6 - 0,7 - 0,8 + 0,9

= ( 0,1 + 0,9 ) + ( 0,2 - 0,8 ) - ( 0,3 + 0,7 ) - ( 0,4 - 0,8 ) + 0,5

= 1 + ( - 0,6 ) - 1 - ( 0,2 ) + 0,5

= 1 + ( - 0,6 ) - 1 + 0,2 + 0,5

= [ 1 + ( - 0,6 ) ] - ( 1 - 0,2 - 0,5 )

= 0,4 - 0,3 = 0,1

Vũ khang
Xem chi tiết
Khánh Ngọc
10 tháng 8 2020 lúc 17:03

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}\)

\(=1-\frac{1}{97}\)

\(=\frac{96}{97}\)

Khách vãng lai đã xóa
Nguyễn Minh Đăng
10 tháng 8 2020 lúc 17:03

Bài làm:

Ta có: \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}\)

\(=1-\frac{1}{97}\)

\(=\frac{96}{97}\)

Khách vãng lai đã xóa
Xyz OLM
10 tháng 8 2020 lúc 17:04

Ta có \(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{94.97}=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{94}-\frac{1}{7}=1-\frac{1}{7}=\frac{6}{7}\)

P/S : Dấu "." là dấu "x" nha !

Khách vãng lai đã xóa
Duy Nguyễn Văn Duy
Xem chi tiết
Akai Haruma
6 tháng 12 2023 lúc 23:50

Bài 1:

$M=3.4.5+4.5.6+...+13.14.15$

$4M=3.4.5(6-2)+4.5.6(7-3)+....+13.14.15(16-12)$

$=-2.3.4.5+3.4.5.6-3.4.5.6+4.5.6.7+....-12.13.14.15+13.14.15.16$

$=-2.3.4.5+13.14.15.16=43560$

$M=43560:4=10890$

Akai Haruma
6 tháng 12 2023 lúc 23:52

Bài 2:

a.

$3M=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}$

$=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{100-97}{97.100}$

$=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}$

$=1-\frac{1}{100}=\frac{99}{100}$

$M=\frac{99}{100}:3=\frac{33}{100}$

Bao Tran
Xem chi tiết
Nguyễn Hoàng Tiến
9 tháng 5 2016 lúc 19:41

\(A=3\times\left(\frac{3}{1\times4}+\frac{3}{4\times7}+\frac{3}{7\times10}+...+\frac{3}{97\times100}\right)\)

\(A=3\times\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=3\times\left(1-\frac{1}{100}\right)\)

\(A=3\times\frac{99}{100}\)

\(A=\frac{297}{100}\)

Hoàng Phúc
9 tháng 5 2016 lúc 19:41

\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+......+\frac{3^2}{97.100}\)

\(A=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\)

Đặt \(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)

Ta có: \(S=\frac{3}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+.....+\frac{3}{97.100}\right)\)

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{97}-\frac{1}{100}\)

\(S=1-\frac{1}{100}=\frac{99}{100}\)

\(\Rightarrow A=3.S=3.\frac{99}{100}=\frac{297}{100}\)

Nguyễn Mai Phương
Xem chi tiết
Nguyễn thành Đạt
26 tháng 6 2023 lúc 20:24

Em cần phần nào nhỉ .

A = \(\dfrac{5}{1.6}\)+\(\dfrac{5}{6.11}\)+\(\dfrac{5}{11.16}\)+\(\dfrac{5}{16.21}\)+...+\(\dfrac{5}{101.106}\)

A = \(\dfrac{1}{1}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{101}-\dfrac{1}{106}\)

A = \(\dfrac{1}{1}\) - \(\dfrac{1}{106}\)

A = \(\dfrac{105}{106}\)

B = \(\dfrac{3}{1.4}\) +\(\dfrac{3}{4.7}\)+\(\dfrac{3}{7.10}\)+...+\(\dfrac{3}{97.100}\)

B = \(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\)

B = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)

B = \(\dfrac{99}{100}\)

C = \(\dfrac{1}{2.7}+\dfrac{1}{7.12}\) + \(\dfrac{1}{12.17}\)+...+ \(\dfrac{1}{97.102}\)

C= \(\dfrac{1}{5}\) \(\times\)\(\dfrac{5}{2.7}+\dfrac{5}{7.12}+\dfrac{5}{12.17}+...+\dfrac{5}{97.102}\))

C = \(\dfrac{1}{5}\)\(\times\)(\(\dfrac{1}{2}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{12}\) + \(\dfrac{1}{12}\) - \(\dfrac{1}{17}\)+...+ \(\dfrac{1}{97}\) - \(\dfrac{1}{102}\))

C = \(\dfrac{1}{5}\) \(\times\)\(\dfrac{1}{2}\) - \(\dfrac{1}{102}\))

C = \(\dfrac{1}{5}\) \(\times\) \(\dfrac{25}{51}\)

C = \(\dfrac{5}{51}\) 

D = \(\dfrac{1}{2}\) +   \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\)

D = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\)+\(\dfrac{1}{7.8}\)\(\dfrac{1}{8.9}\)

D = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\) - \(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)

D = \(\dfrac{1}{1}\) - \(\dfrac{1}{9}\)

D = \(\dfrac{8}{9}\)

E = \(\dfrac{3}{2.4}\)+\(\dfrac{3}{4.6}\)+\(\dfrac{3}{6.8}\)+...+\(\dfrac{3}{98.100}\)

E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{2}{2.4}\) + \(\dfrac{2}{4.6}\)\(\dfrac{2}{6.8}\)+...+\(\dfrac{2}{98.100}\))

E = \(\dfrac{3}{2}\)\(\times\)\(\dfrac{1}{2}\) - \(\dfrac{1}{4}\)\(\dfrac{1}{4}\) - \(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{8}\)+...+\(\dfrac{1}{98}\) - \(\dfrac{1}{100}\))

E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{1}{2}\) - \(\dfrac{1}{100}\))

E = \(\dfrac{3}{2}\) \(\times\) \(\dfrac{49}{100}\)

E = \(\dfrac{147}{200}\)

đỗ thị bích trâm
Xem chi tiết
Lã Tiệp Quyên
10 tháng 10 2018 lúc 11:16

A = 1/1.4 + 1/4.7 + 1/7.10 + ... + 1/97.100

3A = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/97.100 = (4-1)/1.4 + (7-4)/4.7 + (10-7)/7.10 + ... + (100-97)/97.100

= 1/1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/97 - 1/100 = 1 - 1/100 = 99/100

=> A = 33/100

A = x/2 => x = 2.A = 33/50