Cho A=1-2018+2018^2-2018^3+...-2018^2017+2018^2018. Chứng minh 2019.A-1 là 1 lũy thừa của 2018
cho E=2018!+2018!/2+2018!/3+...+2018!/2017+2018!/2018
Chứng minh E chia hết cho 2019
cho A =1+2^2018+3^2017+4^2016+...+2018^2+2019,B=1+2^2017+3^2016+...+2017^2+2018,chứng tỏ giá trị biểu thức A-3B dương
cho A =1+2^2018+3^2017+4^2016+...+2018^2+2019,B=1+2^2017+3^2016+...+2017^2+2018,chứng tỏ giá trị biểu thức A-3B dương
so sanh A B biet.
A=2017×2018-1/2017×2018
B=2018×2019-1/2018×2019
ban nao tra loi dung minh tich cho khong duoc lam tat
\(A=\frac{2017.2018-1}{2017.2018}=1-\frac{1}{2017.2018}\)(1)
\(B=\frac{2018.2019-1}{2018.2019}=1-\frac{1}{2018.2019}\)(2)
Từ(1) và (2)
\(\Rightarrow B>A\)
Ch0 A= 1/2 + 1/ 2^2 + 1/2^3 + .......+ 1/2^2017 + 1/2^2018. Chứng t0 giá trị của biểu thức 2^2018 x A +1 ) là m0t lũy thừa v0i c0 s0 tự nhiên
a)A=/x+7/+/x^2-169/-/x-2018/
b)B=[2018/2+2018/3+2028/4+.....+2019/2018]:[1/2018+2/2017+3/2016+......+2018]
Cho A= 1+2018+2018^2+2018^3+.......+2018^2017.Tìm số dư khi chia A cho 2019.
A=(1+2018)+2018^2(1+2018)+...+2018^2016(1+2018)
=2019(1+2018^2+...+2018^2016) chia hết cho 2019
=>A chia 2019 dư 0
Cho A = 1 /2 +1/2 mũ 2 + 1/2 mũ 3 +.....+ 1/2 mũ 2017 + 1/2 mũ 2018
Chứng tỏ gtrị của biểu thức (2 mũ 2018 . A +1) là một lũy thừa với cơ số tự nhiên.
Có A = 1/2 + 1/2^2 + 1/2^3 + ......+1/2^2018
Nên 2A = 1 + 1/2 + 1/2^2 + ......+1/2^2017
Suy ra 2A - A = (1+ 1/2 + 1/2^2 +.........+1/2^2017) - (1/2 + 1/2^2 + 1/2^3 + ......+ 1/2^2^2008)
A = 1 - 1/2^2008
Nên 2^2008*A + 1 = 2^2008 * (1 - 1/2^2008) + 1
=2^2008 - 1 +1
=2^2008
Vậy, 2^2008*A+1 là 1 lũy thừa với cơ số tự nhiên
cho E=2018!+2018!/2+2018!/3+...+2018!/2017+2018!/2018
Chứng minh E chia hết cho 2019