Cho P(x)=x^4+ax^2+1 và Q(x)=x^3+ax+1
Hãy xác định a để hai đa thức trên có nghiệm chung
Cho đa thức P(x) = x4 + ax2 +1 và đa thức Q(x) = x3 + ax + 1. Xác định a để hai đa thức P(x) và Q(x) có nghiệm chung.
Cho đa thức P(x)= x4+ax2+1vaf Q(x)=x3 + ax+1. Xác định a để đa thức P(x) và Q(x) có chung nghiệm
Cho 2 đa thức P(x)=x4+ax2+1 và Q(x)=x3+ax+1. Hãy xác định giá trị của a để P(x) và Q(x) có nghiệm chung
Giả sử hai đa thức có nghiệm chung \(x_0\), ta thấy cả hai đa thức đều không nhận x = 0 là nghiêm nên \(x_0\ne0\) .
Ta có đồng thời:
\(\hept{\begin{cases}x_0^4+ax_0^2+1=0\\x_0^3+ax+1=0\end{cases}}\)
Nhân cả hai vế của đẳng thức thứ hai với \(x_0\) rồi lấy đẳng thức thứ nhất trừ đi đẳng thức thứ hai ta được:
\(\left(x_0^4+ax_0^2+1\right)-x_0\left(x_0^3+ax_0+1\right)=0\)
=> \(1-x_0=0\)
=> \(x_0=1\)
Thức là nếu hai đa thức có nghiệm chung \(x_0\) thì nghiệm chung đó chỉ có thể bằng 1.
Để x=1 là nghiệm chung của hai đa thức thì: \(1^4+a.1^2+1=0\) => a = -2
cho đa thức p(x)=ax^4 + ax^2 + 1 và đa thức Q(x)=x^3 + ax + 1 .Xác định a để 2 đa thức P(x) và Q(x) có nghiệm chung
GIÚP MÌNH NHA!...
Cho 2 đa thức: \(P\left(x\right)=x^4+ax^2+1\) và \(Q\left(x\right)=x^3+ax+1\). Hãy xác định a để hai đa thức trên có nghiệm chung
Cho đa thức \(P\left(x\right)=x^4+ax^2+1\) và \(Q\left(x\right)=x^3+ax+1\) . Xác định a để đa thức P(x) và Q(x) có nghiệm chung
Ta có:\(\begin{Bmatrix} x^{4}+ax^{2}+1=0 & \\x^{3}+ax+1=0 & \end{Bmatrix}\)
Giả sử phương trình có nghiệm chung là \(x_o\)
\(\begin{Bmatrix} x_0^{4}+ax_0^{2}+1=0(1) & \\x_0^{3}+ax_0 +1=0(2) & \end{Bmatrix}\)
Suy ra
\(x_0^{4}-x_0^{3}+ax_0^{2}-ax_0=0\Leftrightarrow x_0(x_0-1)(x_0^{2}+a)=0\Leftrightarrow \begin{bmatrix} x_0=0 & & \\x_0=1 & & \\x_0^2+a=0 & & \end{bmatrix}\)Thử lại thấy a=-2 phương trình sẽ có 1 nghiệm chung x=1
Giả sử nghiệm chung của hai đa thức là \(x_0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0^4+ax_0^2+1=0\\x_0^3+ax_0+1=0\end{matrix}\right.\) \(\Rightarrow x_0^4+ax_0^2+1=x_0^3+ax_0+1\)
\(\Rightarrow x_0^4-x_0^3+ax^2_0-ax_0=0\Leftrightarrow x_0^3\left(x_0-1\right)+ax_0\left(x_0-1\right)=0\)
\(\Leftrightarrow x_0\left(x_0-1\right)\left(x_0^2+a\right)=0\) \(\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=1\\x^2_0=-a\end{matrix}\right.\)
- Thay \(x_0=0\) vào ta được \(P\left(0\right)=1\Rightarrow\) ko phải nghiệm (loại)
- Thay \(x_0=1\) vào \(\left\{{}\begin{matrix}P\left(1\right)=a+2=0\Rightarrow a=-2\\Q\left(1\right)=a+2=0\Rightarrow a=-2\end{matrix}\right.\) (nhận)
- Với \(x_0^2=-a\Rightarrow a=-x^2_0\) thay vào ta được:
\(\left\{{}\begin{matrix}P\left(x_0\right)=x_0^4+\left(-x_0^2\right)x_0^2+1=1\ne0\\Q\left(x_0\right)=x_0^3+\left(-x_0^2\right)x_0+1=1\ne0\end{matrix}\right.\) (loại)
Vậy với \(a=-2\) thì 2 đa thức có nghiệm chung \(x=1\)
1)Cho đa thức sau : f(x)=\(x^3+2x^2+ax+1\)
Tìm a, biết đa thức f(x) có một nghiệm \(x=-2\)
2) Cho đa thức sau : f(x)=\(x^2+ax+b\)
Xác định a,b biết đa thức f(x) có hai nghiệm \(x=1;x=2\)
1. Thay x = -2 vào \(f\left(x\right)\), ta có:
\(\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=\)0
=> -8 + 8 - 2a + 1 = 0
=> -2a +1 = 0
=> -2a = -1
=> a = \(\frac{1}{2}\)
Vậy a = \(\frac{1}{2}\)
2. * Thay x = 1 vào \(f\left(x\right)\), ta có:
12 + 1.a + b = 1 + a + b = 0 ( 1)
* Thay x = 2 vào biểu thức \(f\left(x\right)\), ta có:
22 + 2.a + b = 4 + 2a + b = 0 ( 2)
* Lấy (2 ) - ( 1) , ta có:
( 4 + 2a + b ) - ( 1 + a + b ) = 3 + a
=> 3 + a = 0
=> a = -3
* 1 + a + b = 0
=> 1 - 3 + b = 0
=> b = -1 + 3 = -2
Vậy a= -3 và b= -2
Xác định hệ số a, b để:
a. Đa thức A (x)= x2+ax+b có hai nghiệm là x=2; x=3
b. Đa thức B (x)= x3+ax2+bx+2 có hai nghiệm là x=-2; x=2
a) ta có: x=2 là nghiệm của A(x)
=> A(2) = 22 + a.2 + b =0
=> 4 + a.2 + b =0
=> b = -4 - a.2
ta có: x = 3 là nghiệm của A(x)
=> A(3) = 32 +a.3 + b = 0
=> 9+ a.3 + b = 0
thay số: 9+ a.3 - 4-2.a = 0
( 9-4) + (a.3-2.a) = 0
5 + a = 0
=> a = -5
mà b = 4-a.2 = 4 - (-5).2 = 4 + 10 = 14
=> b = 14
KL: a = -5; b= 14
phần b bn lm tương tự nha!
Xác định hệ số a,b để đa thức:
a) f(x) = x^3 - ax^2 - 9x + b có hai nghiệm là 1 và 3
b) g(x) = (2a + 3).x^2 - 5x + b có hai nghiệm là x = 2 và x =
c) h(x) = ax^3 + 6x^2 + bx + 6 có hai nghiệm là x = -2 và x = -3