[1/4x-1]+[5/6x-2]-[3/8x+5]-3,5
a,Tìm x biết:(1/4x-1)+(5/6x-2)-(3/8x+5)=3,5
b, Tìm nghiệm các của đa thức: x2+1/2x và (3x+5)x(5x-2x)
x mũ 2-x=0
x mũ 2 +2x=0
x mũ 2-3x=0
3x mũ 2 +4=0
[1/4x-1]+[5/6x-2]-[3/8x+5]-3,5=0
Bài 1: Tìm x : A) 25%x+4x=35-0,75x
B) 3/4.(x-2) - 1/2.(6-2x)=1/6x + 5
C) -1/2.(3x+5) - 2/3.(9-6x)= 3/5.(x-10) - 3
D) (1/4x - 1,5) + (5/6x-3) - (5/8x-0,5)= -4,5
a)-6x^3y^2:2xy^2. b)-1/4x^4y^3:1/2x^3y^2. c) 8x^4y^5:4x^3y^4
a: \(=\left(-\dfrac{6}{2}\right)\cdot\dfrac{x^3}{x}\cdot\dfrac{y^2}{y^2}=-3x^2\)
b: \(=\left(-\dfrac{1}{4}:\dfrac{1}{2}\right)\cdot\dfrac{x^4}{x^3}\cdot\dfrac{y^3}{y^2}=-\dfrac{1}{2}xy\)
c: \(=\dfrac{8}{4}\cdot\dfrac{x^4}{x^3}\cdot\dfrac{y^5}{y^4}=2xy\)
\(a,-6x^3y^2:2xy^2=-3x^2\)
\(b,-\dfrac{1}{4}x^4y^3:\dfrac{1}{2}x^3y^2=-\dfrac{1}{2}xy\)
\(c,8x^4y^5:4x^3y^4=2xy\)
#Urushi
các bạn giúp mik bài này vs
5) (4x-5).(x+2)-(x+5).(x-3)-3x^2-x
6) (x-3).(x+7)-(2x-1).(x+2)+x.(x-1)
7) (7x-3).(2x+1)-(5x-2).(x+4)-9x^2+17x
8) -2.(x-7).(x+3)+(5x-1).(x+4)-3x^2-27x
9) (6x-5).(x+8)-(3x-1).(2x+3)-9.(4x-3)
10) (8x-1).(x+7)-(x-2).(8x+5)-11.(6x+1).
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?
cho
f(x)=4x^2-11x+8x^3+4x^4+5+2x^2 và g(x)=-5x^3-6x^2-4x^4+9+5x-3x^3.Tính
F(-1)+g(-1) và f(1)-g(1)
cho
f(x)=4x^2-11x+8x^3+4x^4+5+2x^2 và g(x)=-5x^3-6x^2-4x^4+9+5x-3x^3.Tính
F(-1)+g(-1) và f(1)-g(1)
C1.10x2=6x+8
C2.23x+10=23+13x
C3.9x-6=4x+1
C4.15x-12=11x+15
C5.21x+9=19-11x
C6.15+16x=8-3x
C7.19-4x=8x+23
C8.51-10x=3x-21
C9.8-6x=11-4x
C10.2(3x+4)-3(1-2x)=8x+10
C11.5(3-4x)-4(2x-5)=9-10x
C12.3(5x-6)-2(2x-5)=11x-10
C13.10x+5(3x-2)=25-10x
C14.6(2x-3)+3(3-5x)=8x-9
C15.3(4x-2)+2(6-2x)=10-6x
C16.5(3-6x)-4(2-2x)=4x-9
B2:tìm cặp số nguyên x, y thỏa mãn
X y+2x+y=0
nhiều quá bạn ơi , mk nghĩ bạn nên tách ra rồi hãy đăng lên
Bài 1:
16:
=>15-30x-8+8x=4x-9
=>-22x+7=4x-9
=>-26x=-16
=>x=8/13
15: \(\Leftrightarrow12x-6+12-4x=10-6x\)
=>8x+6=10-6x
=>14x=4
=>x=2/7
14: \(\Leftrightarrow12x-18+9-15x=8x-9\)
=>-3x-9=8x-9
=>x=0
13: \(\Leftrightarrow10x+15x-10=25-10x\)
=>25x-10=25-10x
=>35x=35
=>x=1
12: \(\Leftrightarrow15x-18-4x+10=11x-10\)
=>11x-8=11x-10(loại)
giải pt :
a, \(3\sqrt[3]{3x+5}=x^3+3x^2+3x-1\)
b, \(\sqrt[3]{6x+1}=8x^3-4x-1\)
a.
\(3\sqrt[3]{3\left(x+1\right)+2}=\left(x+1\right)^3-2\)
Đặt \(\sqrt[3]{3\left(x+1\right)+2}=y\) ta được:
\(\left\{{}\begin{matrix}3y=\left(x+1\right)^3-2\\3\left(x+1\right)+2=y^3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3y+2=\left(x+1\right)^3\\3\left(x+1\right)+2=y^3\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^3-y^3=3y-3\left(x+1\right)\)
\(\Leftrightarrow\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2+3\right]=0\)
\(\Leftrightarrow x+1=y\)
\(\Leftrightarrow\left(x+1\right)^3=y^3\)
\(\Leftrightarrow\left(x+1\right)^3=3\left(x+1\right)+2\)
\(\Leftrightarrow x^3+3x^2-4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)^2=0\)
b.
\(\Leftrightarrow8x^3-\left(6x+1\right)+2x-\sqrt[3]{6x+1}=0\)
Đặt \(\left\{{}\begin{matrix}2x=a\\\sqrt[3]{6x+1}=b\end{matrix}\right.\) ta được:
\(a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow2x=\sqrt[3]{6x+1}\)
\(\Leftrightarrow8x^3-6x-1=0\)
Đặt \(f\left(x\right)=8x^3-6x-1\)
\(f\left(x\right)\) là hàm đa thức nên liên tục trên R, đồng thời \(f\left(x\right)\) bậc 3 nên có tối đa 3 nghiệm
\(f\left(-1\right)=-3< 0\) ; \(f\left(-\dfrac{1}{2}\right)=1>0\) \(\Rightarrow f\left(-1\right).f\left(-\dfrac{1}{2}\right)< 0\)
\(\Rightarrow f\left(x\right)\) có 1 nghiệm thuộc \(\left(-1;-\dfrac{1}{2}\right)\) (1)
\(f\left(0\right)=-1\Rightarrow f\left(0\right).f\left(-\dfrac{1}{2}\right)< 0\Rightarrow f\left(x\right)\) có 1 nghiệm thuộc \(\left(-\dfrac{1}{2};0\right)\) (2)
\(f\left(1\right)=1\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) có 1 nghiệm thuộc \(\left(0;1\right)\) (3)
Từ (1);(2);(3) \(\Rightarrow\) cả 3 nghiệm của \(f\left(x\right)\) đều thuộc \(\left(-1;1\right)\)
Do đó, ta chỉ cần tìm nghiệm của \(f\left(x\right)\) với \(x\in\left(-1;1\right)\)
Do \(x\in\left(-1;1\right)\), đặt \(x=cosu\)
\(\Rightarrow8cos^3u-6cosu-1=0\)
\(\Leftrightarrow2\left(4cos^3u-3cosu\right)=1\)
\(\Leftrightarrow2cos3u=1\)
\(\Leftrightarrow cos3u=\dfrac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}3u=\dfrac{\pi}{3}+k2\pi\\3u=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u=\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\\u=-\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\end{matrix}\right.\)
Vậy nghiệm của pt là: \(x=cosu=\left\{cos\left(\dfrac{\pi}{9}\right);cos\left(\dfrac{5\pi}{9}\right);cos\left(\dfrac{7\pi}{9}\right)\right\}\)