Tính : 3/10.12+3/12.14+3/14.16+...+3/48.50
3 phần 10.12 + 3 phần 12.14+ 3 phần 14.16 + ...+ 3 phần 48.50
tính hợp lí
=3/2(2/10.12+2/12.14+...+2/48.50)
=3/2(1/10-1/12+1/12-1/14+...+1/48-1/50)
=3/2(1/10-1/50)
=3/2 . 2/25 =3/25
Đặt phép tính trên là A
Ta có:
A=3/10*12+3/12*14+3/14*16+...+3/48*50
A*2/3=2/10*12+2/12*14+2/14*16+...+2/48*50
A*2/3=1/10-1/12+1/12-1/14+1/14-1/16+...+1/48-1/50
A*2/3=1/10-1/50
A*2/3=2/25
A=2/25:2/3
A=3/25
Vậy A=3/25
Nếu đúng thì k cho mình nha
\(\frac{3}{10.12}+\frac{3}{12.14}+\frac{3}{14.16}+...+\frac{3}{48.50}\)
\(=\frac{3}{2}.\left(\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+\frac{1}{14}-\frac{1}{16}+...+\frac{1}{48}-\frac{1}{50}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{10}-\frac{1}{50}\right)\)
\(=\frac{3}{2}.\frac{2}{25}\)
\(=\frac{3}{25}\)
(1). Tìm số tự nhiên n để biểu thức \(\dfrac{2n}{n-2}\) nhận giá trị nguyên.
(2). Thực hiện phép tính: \(\dfrac{3}{10.12}+\dfrac{3}{12.14}+\dfrac{3}{14.16}+...+\dfrac{3}{48.50}\)
Cảm ơn ạ!
(1) Để \(\dfrac{2n}{n-2}\) là số nguyên thì 2n⋮n-2
2n-4+4⋮n-2
2n-4⋮n-2⇒4⋮n-2
n-2∈Ư(4)⇒Ư(4)={1;-1;2;-2;4;-4}
n∈{3;1;4;0;6;-2}
(2) \(\dfrac{3}{10.12}+\dfrac{3}{12.14}+...+\dfrac{3}{48.50}\)
=\(\dfrac{3}{2}.\left(\dfrac{2}{10.12}+\dfrac{2}{12.14}+...+\dfrac{2}{48.50}\right)\)
=\(\dfrac{3}{2}.\left(\dfrac{1}{10}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{14}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\)
=\(\dfrac{3}{2}.\left(\dfrac{1}{10}-\dfrac{1}{50}\right)\)
=\(\dfrac{3}{2}.\dfrac{2}{25}\)
=\(\dfrac{3}{25}\)
Giải:
(1) Để \(\dfrac{2n}{n-2}\) là số nguyên thì \(2n⋮n-2\)
\(2n⋮n-2\)
\(\Rightarrow2n-4+4⋮n-2\)
\(\Rightarrow4⋮n-2\)
\(\Rightarrow n-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-2 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -2 | 0 | 1 | 3 | 4 | 6 |
Kết luận | loại | t/m | t/m | t/m | t/m | t/m |
Vậy \(n\in\left\{0;1;3;4;6\right\}\)
(2) \(\dfrac{3}{10.12}+\dfrac{3}{12.14}+\dfrac{3}{14.16}+...+\dfrac{3}{48.50}\)
\(=\dfrac{3}{2}.\left(\dfrac{2}{10.12}+\dfrac{2}{12.14}+\dfrac{2}{14.16}+...+\dfrac{2}{48.50}\right)\)
\(=\dfrac{3}{2}.\left(\dfrac{1}{10}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{16}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\)
\(=\dfrac{3}{2}.\left(\dfrac{1}{10}-\dfrac{1}{50}\right)\)
\(=\dfrac{3}{2}.\dfrac{2}{25}\)
\(=\dfrac{3}{25}\)
Chúc bạn học tốt!
(1) Để biểu thức \(\dfrac{2n}{n-2}\) nguyên thì \(2n⋮n-2\)
\(\Leftrightarrow4⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{3;1;4;0;6;-2\right\}\)
Bài 2: Tính:
\(\frac{1}{10.12}+\frac{1}{12.14}+\frac{1}{14.16}+...+\frac{1}{48.50}\)
bn lấy 1/2 nhân ra ngoài ròi tính như bình thường nha!
Đặt tổng trên là A ta có
\(2A=\frac{2}{10.12}+\frac{2}{12.14}+\frac{2}{14.16}+...+\frac{2}{48.52}\)
\(2A=\frac{12-10}{10.12}+\frac{14-12}{12.14}+\frac{16-14}{14.16}+...+\frac{50-48}{48.50}\)
\(2A=\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+\frac{1}{14}-\frac{1}{16}+...+\frac{1}{48}-\frac{1}{50}=\frac{1}{10}-\frac{1}{50}=\frac{2}{25}\)
\(\Rightarrow A=\frac{2A}{2}=\frac{1}{25}\)
\(\frac{1}{10.12}+\frac{1}{12.14}+\frac{1}{14.16}+...+\frac{1}{48.50}\)
=\(\frac{1}{5.2.2.6}+\frac{1}{6.2.2.7}+\frac{1}{7.2.2.8}+...+\frac{1}{24.2.2.25}\)
=\(\frac{1}{2}.\left(\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}+...+\frac{2}{24.25}\right)\)
=\(\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\right)\)
=\(\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{25}\right)\)
=\(\frac{1}{2}.\frac{4}{25}\)
=\(\frac{2}{25}\)
mình không biết đúng hông có gì sai cho mình xin lỗi
Tính hợp lí (nếu có thể):
\(\frac{2}{10.12}+\frac{2}{12.14}+\frac{2}{14.16}+...+\frac{2}{48.50}\)
Đặt \(A=\frac{2}{10\cdot12}+\frac{2}{12\cdot14}+\frac{2}{14\cdot16}+...+\frac{2}{48\cdot50}\)
\(A=\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+...+\frac{1}{48}-\frac{1}{50}\)
\(A=\frac{1}{10}-\frac{1}{50}=\frac{5}{50}-\frac{1}{50}=\frac{4}{50}=\frac{2}{25}\)
Vậy \(A=\frac{2}{25}\)
= \(\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+...+\frac{1}{48}-\frac{1}{50}\)
= \(\frac{1}{10}-\frac{1}{50}\)= \(\frac{2}{25}\)
2/10.12+2/12.14+2/14.16+...+2/48.50
=1/10-1/12+1/12-1/14+1/14-1/16+...+1/48-1/50
=( 1/10-1/50 )+( 1/12-1/12 )+( 1/14-1/14 )+...+( 1/48-1/48 )
=( 5/50-1/50 )+0+0+...+0
=4/50
=2/25
CHÚC BẠN THÂN YÊU HỌC TỐT ^:^
3/10.2+3/12.14+3/14.16+.....+3/48.50
x/5+1/2=6/10
1/3+1/6+1/10+...+2/x.(x+1)=2007/2009
Tinh:10.12+12.14+14.16+...+198.200
A=4/10.12 + 4/12.14 + 4/14.16 + ... + 4/96.98
`A=4/10.12+4/12.14+4/14.16+...+4/96.98`
`=2(2/10.12+2/12.14+2/14.16+...+2/96.98)`
`=2(1/10-1/12+1/12-1/14+1/14-1/16+...+1/96-1/98)`
`=2(1/10-1/98)`
`=2 . 22/245`
`=44/245`
`A=4/(10.12) + 4/(12.14) + ... + 4/(96.98)`
`= 2 . (2/(10.12) + 2/(12.14) + ... + 2/(96.98))`
`= 2 . (1/10 - 1/12 + 1/12 - 1/14 +....+ 1/96 - 1/98)`
`= 2. (1/10 - 1/98)`
`= 2 . 22/245`
`= 44/245`
2/10.12+2/12.14-2/12.14+....+2/48.50
tra loi cho minh nhe minh tich cho
Tính:
a) A = 3/10.12 + 3/12.14 +...+ 3/998.1000
b) B = 2/1.4 + 2/4.7 + 2/7.10 +...+ 2/22.25
a) A = 3/10.12 + 3/12.14 + ... + 3/998.1000
2/3.A = 2/10.12 + 2/12.14 + ... + 2/998.1000
2/3.A = 1/10 - 1/12 + 1/12 - 1/14 + ... + 1/998 - 1/1000
2/3.A = 1/10 - 1/1000
2/3.A = 99/1000
A = 99/1000 : 2/3
A = 99/1000 . 3/2
A = 297/2000
b) B = 2/1.4 + 2/4.7 + 2/7.10 + ... + 2/22.25
3/2.B = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/22.25
3/2.B = 1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/22 - 1/25
3/2.B = 1 - 1/25
3/2.B = 24/25
B = 24/25 : 3/2
B = 24/25 . 2/3
B = 16/25
Ủng hộ mk nha ^_-
a) Ta có: \(A=\frac{3}{10.12}+\frac{3}{12.14}+....+\frac{3}{998.1000}.\)
\(\Rightarrow\frac{2}{3}A=\frac{1}{10.12}+\frac{1}{12.14}+...+\frac{1}{998.1000}\)
\(\Rightarrow\frac{2}{3}A=\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+...+\frac{1}{998}-\frac{1}{1000}\)
\(\Rightarrow\frac{2}{3}A=\frac{1}{10}-\frac{1}{1000}=\frac{99}{1000}\)
\(\Rightarrow A=\frac{99}{1000}:\frac{2}{3}=\frac{297}{2000}\)
Ta có: \(B=\frac{2}{1.4}+\frac{2}{4.7}+...+\frac{2}{22.25}\)
\(\Rightarrow\frac{3}{2}B=\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{22.25}\)
\(\Rightarrow\frac{3}{2}B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{22}-\frac{1}{25}\)
\(\Rightarrow\frac{3}{2}B=1-\frac{1}{25}=\frac{24}{25}\)
\(\Rightarrow B=\frac{24}{25}:\frac{3}{2}=\frac{16}{25}\)