CMR:\(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\le\frac{3}{4}\) với mọi x; y; z
cho \(x,y,z\inℕ^∗.CMR:\frac{x}{2x+y+z}+\frac{y}{2y+x+z}+\frac{z}{2z+x+y}\le\frac{3}{4}\)
\(\frac{x}{2x+y+z}=\frac{x}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)
\(\frac{y}{2y+x+z}=\frac{y}{\left(x+y\right)+\left(y+z\right)}\le\frac{1}{4}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)\)
\(\frac{z}{2z+x+y}=\frac{z}{\left(x+z\right)+\left(y+z\right)}\le\frac{1}{4}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)
Cộng theo vế:
\(\frac{x}{2x+y+z}+\frac{y}{2y+x+z}+\frac{z}{2z+x+y}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{y}{x+y}+\frac{y}{y+z}+\frac{z}{y+z}+\frac{x}{x+z}+\frac{z}{x+z}\right)=\frac{3}{4}\)
Đặt \(\hept{\begin{cases}2x+y+z=a\\2y+z+x=b\\2z+x+y=c\end{cases}}\Rightarrow a+b+c=4\left(x+y+z\right)=\)
\(4\left(a-x\right)=4\left(b-y\right)=4\left(c-z\right)\Rightarrow\hept{\begin{cases}4x=3a-b-c\\4y=3b-c-a\\4z=3c-a-b\end{cases}}\)
Lúc đó thì \(4VT=\frac{3a-b-c}{a}+\frac{3b-c-a}{b}+\frac{3c-a-b}{c}\)
\(=3-\frac{b}{a}-\frac{c}{a}+3-\frac{c}{b}-\frac{a}{b}+3-\frac{a}{c}-\frac{b}{c}\)
\(=9-\left(\frac{a}{b}+\frac{b}{a}\right)-\left(\frac{b}{c}+\frac{c}{b}\right)-\left(\frac{c}{a}+\frac{a}{c}\right)\le3\)
\(\Rightarrow VT\le\frac{3}{4}\)
Đẳng thức xảy ra khi a = b = c hay x = y = z
cho x,y,z > 0. Cmr: \(\frac{2x}{x^6+y^4}+\frac{2y}{y^6+z^4}+\frac{2z}{z^6+x^4}\le\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\)
\(\frac{1}{x^4}+\frac{1}{y^4}=\frac{x^2}{x^6}+\frac{1}{y^4}\ge\frac{\left(x+1\right)^2}{x^6+y^4}\ge\frac{4x}{x^6+y^4}\)
tương tự
\(\frac{1}{y^4}+\frac{1}{z^4}\ge\frac{4y}{y^6+z^4}\);
\(\frac{1}{z^4}+\frac{1}{x^4}\ge\frac{4z}{z^6+x^4}\);
cộng vế với vế => đpcm
Dấu "=" xảy ra <=> x=y=z=1
Cách khác:
\(x^6+y^4\ge2\sqrt{x^6y^4}=2x^3y^2\)
\(\Rightarrow\frac{2}{x^6+y^4}\le\frac{1}{x^2y^2}\)
CMTT , ta có VT \(\le\frac{1}{x^2y^2}+\frac{1}{y^2z^2}+\frac{1}{z^2x^2}\)
Bổ đề: \(a^2+b^2+c^2\ge ab+bc+ca\) ( luôn đúng)
\(\Rightarrow\frac{1}{x^2y^2}+\frac{1}{y^2z^2}+\frac{1}{z^2x^2}\le\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\)
ĐPCM
Dấu " =" xảy ra khi x=y=z=1
x,y,z là các số nguyên dương: CMR
\(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{3}{4}\)
Cho x,y,z là các số dương. CMR :
D = \(\frac{x}{2x+y+z}+\frac{Y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{3}{4}\)
Cho \(x;y;z>0\)
\(CMR:\) \(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\le\frac{3}{4}\)
Có : (a-b)^2>=0
<=> a^2+b^2-2ab >=0
<=>a^2+b^2 >= 2ab
<=>a^2+b^2+2ab >= 4ab
<=> (a+b)^2 >= 4ab
Với a,b >0 thì chia cả 2 vế cho (a+b).ab thì :
a+b/ab >= 4/a+b
<=>4/a+b <= 1/a+1/b
<=> 1/a+b <= 1/4.(1/a+1/b) ( với mọi a,b > 0 )
Áp dụng bđt trên cho x;y;z > 0 thì : x/2x+y+z = x. 1/(x+y)+(z+x) <= x/4 .( 1/x+y+1/x+z) = x/4.(x+y) + x/4.(x+z)
Tương tự : y/x+2y+z <= y/4.(y+x) + y/4.(y+z)
z/x+y+2z <= z/4.(z+x) + z/4.(z+y)
=> VT <= [ x/4.(x+y) + y/4.(y+x) ] + [ y/4.(y+z) + z/4.(z+y) ] + [ z/4.(z+x) + x/4.(x+z) ] = 1/4 + 1/4 + 1/4 = 3/4
=> ĐPCM
Dấu "=" xảy ra <=> x=y=z > 0
k mk nha
áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với mọi a,b >0
Thì \(\frac{x}{x+y}+\frac{x}{x+z}\ge\frac{4x}{2x+y+z}\)
Tương tự thì đpcm
Cách này nhanh này thành đơ
Cho x, y , z là các số dương . CMR :
\(D=\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\)\(\le\frac{3}{4}\)
Bài của lớp 7 ghê vậy!!
Áp dụng bất đẳng thức Cauchy cho 3 số dương x,y,z
ta có bổ đề \((a+b+c)({1\over a}+{1\over b}+{1\over c})\) > 9
Áp dụng vào ta có
\(D*({2x+y+z\over x}+{2y+x+z\over y}+{2z+y+x\over z})\) >9(1)
Ta có \({2x+y+z\over x}+{2y+x+z\over y}+{2z+y+x\over z}\) =\(2+{y+z\over x}+2+{z+x\over y}+2+{y+x\over z}\)=\(6-3+{y+z\over x}+1+{z+x\over y}+1+{y+x\over z}+1\)=\(3+{x+y+z\over x}+{y+x+z\over y}+{z+y+x\over z}\)=\(3+(x+y+z)({1\over x}+{1\over y}+{1\over z})\) > 3+9=12
thay vào(1)
Ta có \(D \) < \({9\over 12}\)=\({3\over 4}\)
Dấu "=" xảy ra khi x=y=z
=> ĐPCM
áp dụng bất đẳng thức phụ : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\frac{x}{2x+y+z}=\frac{x}{x+y+x+z}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)
\(\frac{y}{2y+x+z}\le\frac{1}{4}\left(\frac{y}{y+x}+\frac{y}{y+z}\right)\)
\(\frac{z}{2z+x+y}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)
cộng vế theo vế
\(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{1}{4}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{z+x}\right)=\frac{1}{4}\cdot3=\frac{3}{4}\)(đpcm)
Cho x;y;z là các số dương
CMR: \(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{3}{4}\)
\(\frac{x}{2x+y+z}=\frac{x}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\le\frac{1}{16}\left(\frac{x}{x}+\frac{x}{y}+\frac{x}{x}+\frac{x}{z}\right)=\frac{1}{16}\left(2+\frac{x}{y}+\frac{x}{z}\right)\)
\(tươngtự:\frac{y}{2y+z+x}\le\frac{1}{16}\left(2+\frac{y}{z}+\frac{y}{x}\right);\frac{z}{2z+x+y}\le\frac{1}{16}\left(2+\frac{z}{x}+\frac{z}{y}\right).\text{Cộng vế theo vế ta được:}\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+y+x}\le\frac{1}{16}\left(2+2+2+\frac{x}{y}+\frac{y}{x}+\frac{z}{x}+\frac{x}{z}+\frac{y}{z}+\frac{z}{y}\right)=\frac{1}{16}\left[6+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)\right]\ge\frac{1}{16}\left(6+2\sqrt{\frac{xy}{xy}}+2\sqrt{\frac{xz}{xz}}+2\sqrt{\frac{yz}{yz}}\right)=\)
\(=\frac{12}{16}=\frac{3}{4}\Rightarrow\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{3}{4}\left(\text{đpcm}\right)\)
Cho x,y,z > 0. CMR: \(\frac{2x}{x^6+y^4}+\frac{2y}{y^6+z^4}+\frac{2z}{z^6+x^4}\le\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\)
Áp dụng bất đẳng thức Cauchy - Schwarz : \(\frac{a^2}{b}+\frac{c^2}{d}\ge\frac{\left(a+c\right)^2}{b+d}\)
\(\frac{1}{x^4}+\frac{1}{y^4}=\frac{x^2}{x^6}+\frac{1^2}{y^4}\ge\frac{\left(x+1\right)^2}{x^6+y^4}\ge\frac{4x}{x^6+y^4}\)(\(\left(a+b\right)^2\ge4a\))
Tương tự: \(\frac{1}{y^4}+\frac{1}{z^4}\ge\frac{4y}{y^6+z^4};\frac{1}{z^4}+\frac{1}{x^4}\ge\frac{4z}{z^6+x^4}\)
\(\Rightarrow2.\left(\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\right)\ge4\left(\frac{x}{x^6+y^4}+\frac{y}{y^6+z^4}+\frac{z}{z^6+x^4}\right)\)
\(\Rightarrow\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\ge\frac{2x}{x^6+y^4}+\frac{2y}{y^6+z^4}+\frac{2z}{z^6+x^4}\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)
với x,y,z >0 áp dụng bđt cosi ta có:
\(x^6+y^4>=2\sqrt{x^6y^4}=2x^3y^2\Rightarrow\frac{2x}{x^6+y^4}< =\frac{2x}{2x^3y^2}=\frac{1}{x^2y^2}\)
\(y^6+z^4>=2\sqrt{y^6z^4}=2y^3z^2\Rightarrow\frac{2y}{y^6+z^4}< =\frac{2y}{2y^3z^2}=\frac{1}{y^2z^2}\)
\(z^6+x^4>=2\sqrt{z^6x^4}=2z^3x^2\Rightarrow\frac{2z}{z^6+x^4}< =\frac{2z}{2z^3x^2}=\frac{1}{z^2x^2}\)
\(\Rightarrow\frac{2x}{x^6+y^4}+\frac{2y}{y^6+z^4}+\frac{2z}{z^6+x^4}< =\frac{1}{x^2y^2}+\frac{1}{y^2z^2}+\frac{1}{z^2x^2}\left(1\right)\)
với x,y,z>0 áp dụng bđt cosi ta có:
\(\frac{1}{x^4}+\frac{1}{y^4}>=2\sqrt{\frac{1}{x^4}\cdot\frac{1}{y^4}}=\frac{2}{x^2y^2}\)
\(\frac{1}{y^4}+\frac{1}{z^4}>=2\sqrt{\frac{1}{y^4}\cdot\frac{1}{z^4}}=\frac{2}{y^2z^2}\)
\(\frac{1}{x^4}+\frac{1}{z^4}>=2\sqrt{\frac{1}{x^4}\cdot\frac{1}{z^4}}=\frac{2}{x^2z^2}\)
\(\Rightarrow\frac{2}{x^4}+\frac{2}{y^4}+\frac{2}{z^4}>=\frac{2}{x^2y^2}+\frac{2}{y^2z^2}+\frac{2}{x^2z^2}\Rightarrow\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}>=\frac{1}{x^2y^2}+\frac{1}{y^2z^2}+\frac{1}{x^2z^2}\)
\(\Rightarrow\frac{1}{x^2y^2}+\frac{1}{y^2z^2}+\frac{1}{x^2z^2}< =\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\left(2\right)\)
từ \(\left(1\right)\left(2\right)\Rightarrow\frac{2x}{x^6+y^4}+\frac{2x}{y^6+z^4}+\frac{2x}{z^6+x^4}< =\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\)(đpcm)
dấu = xảy ra khi x=y=z=1
Cho 3 số dương x, y, z
CM: \(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\le\frac{3}{4}\)
Áp dụng tính chất : 1/a+b < = 1/4.(1/a+1/b) thì :
x/2x+y+z = x.(1/2x+y+z) = x.[1/(x+y)+(x+z)] < = x/4.(1/x+y + 1/x+z)
Tương tự : ..........
=> x/2x+y+z + y/x+2y+z + z/x+y+2z < = 1/4.(x/x+y + x/x+z + y/y+x + y/y+z + z/z+x + z/x+y )
= 1/4. [ ( x/x+y + y/x+y ) + ( y/y+z + z/z+y ) + ( z/z+x + x/x+z )
= 1/4.(1+1+1) = 3/4
Dấu "=" xảy ra <=> x=y=z
Vậy ..........
Tk mk nha
Đặt BT là P:
\(\text{P}=\frac{x}{\left(2x+y+z\right)}-1+\frac{y}{2y+z+x}-1+\frac{z}{\left(2z+x+y\right)}-1+3\)
\(\text{P}=-\frac{\left(x+y+z\right)}{\left(2x+y-z\right)}-\frac{\left(x+y+z\right)}{\left(2y+z+x\right)}-\frac{\left(x+y+z\right)}{\left(2z+x+y\right)}+3\)
\(\text{P}=-\left(x+y+z\right).\left[\frac{1}{\left(2x+y+z\right)}+\frac{1}{\left(2y+z+x\right)}+\frac{1}{\left(2z+x+y\right)}\right]+3\)
Co-si 3 số, ta có:
\(2x+y+z+2y+z+x+2z+x+y\ge3.\sqrt[3]{\left(2x+y+z\right)\left(2y+z+x\right)\left(2z+x+y\right)}\)
\(\Rightarrow4\left(x+y+z\right)\ge3.\sqrt[3]{\left(2x+y+z\right)\left(2y+z+x\right)\left(2z+x+y\right)}\)(1)
Co-si tiếp cho 3 số, ta có:
\(\frac{1}{\left(2x+y+z\right)}+\frac{1}{\left(2y+z+x\right)}+\frac{1}{\left(2z+x+y\right)}\ge3.\sqrt[3]{\frac{1}{\left(2x+y+z\right)}+\frac{1}{\left(2y+z+x\right)}+\frac{1}{\left(2z+x+y\right)}}\)(2)
Lấy (1) và (2) ta có: \(4\left(x+y+z\right)\left[\frac{1}{\left(2x+y+z\right)}+\frac{1}{\left(2y+z+x\right)}+\frac{1}{\left(2z+x+y\right)}\right]\ge9\)
\(\Rightarrow-\left(x+y+z\right).\left[\frac{1}{\left(2x+y+z\right)}+\frac{1}{\left(2y+z+x\right)}+\frac{1}{\left(2z+x+y\right)}\right]\le-\frac{9}{4}\)
Thay P, ta có:
\(\text{P}\le-\frac{9}{3}+3=\frac{3}{4}\left(ĐPCM\right)\)
Dấu "=" xảy ra khi x = y = z.