Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ha nguyen thi
Xem chi tiết
nguyen thi thao
Xem chi tiết
Phạm Minh Hiền
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
15 tháng 8 2017 lúc 12:07

Bài 2 :

Câu a : \(y\left(y^3+y^2-y-2\right)-\left(y^2-2\right)\left(y^2+y+1\right)\)

\(=y^4+y^3-y^2-2y-y^4-y^3-y^2+2y^2+2y+2\)

\(=2\) \(\Rightarrow\) ko phụ thuộc vào biến .

Câu b : \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)

\(=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2\)

\(=29\Rightarrow\) ko thuộc vào biến

Câu c : \(3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)\)

\(=3x^2+15x-3x^2+3x-18x+18\)

\(=18\) \(\Rightarrow\) ko thuộc vào biến

Câu d : \(\left(2x+6\right)\left(4x^2-12x+36\right)-8x^3+5\)

\(=8x^3-24x^2+72x+24x^2-72x+216-8x^3+5\)

\(=221\) \(\Rightarrow\) không thuộc vào biến

Mysterious Person
16 tháng 8 2017 lúc 13:41

câu 1) a) \(\left(x^2+2xy+y^2\right)\left(x+y\right)=\left(x+y\right)^2\left(x+y\right)=\left(x+y\right)^3\)

b) \(y\left(y^3+y^2-3y-2\right)+\left(y^2-2\right)\left(y^2+y-1\right)\)

\(=y^4+y^3-3y^2-2y+y^4+y^3-y^2-2y^2-2y+2\)

\(=2y^4+2y^3-6y^2-4y+2=2y\left(y^3+y^2-3y-2\right)+2\)

\(=2y\left(y+2\right)\left(y^2-y-1\right)+2=2\left(y^2+2y\right)\left(y^2-y-1\right)+2\)

\(=2\left(y^2+2y\right)\left(y^2-y-1+1\right)=2\left(y^2+2y\right)\left(y^2-y\right)\)

c) \(6x^2-\left(2x+5\right)\left(3x-2\right)=6x^2-\left(6x^2-4x+15x-10\right)\)

\(\Leftrightarrow6x^2-6x^2+4x-15x+10=-11x+10\)

d) \(\left(2x-1\right)\left(3x+1\right)+\left(3x+4\right)\left(3-2x\right)\)

\(\)\(=6x^2+2x-3x-1+9x-6x^2+12-8x=11\)

e) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)\)

\(=21x-15x^2-35+25x-\left(10x-15x^2+4-6x\right)\)

\(21x-15x^2-35+25x-10x+15x^2-4+6x=42x-39\)

dương hoang
23 tháng 8 2022 lúc 15:10

a)(x2 – 2xy + y2)(x – y)

   = (x2 – 2xy + y2).x + (x2 – 2xy + y2).(–y)

   = x2.x + (–2xy).x + y2.x + x2.(–y) + (–2xy).(–y) + y2.(–y)

  = x3 – 2x2y + xy2 – x2y + 2xy2 – y3

   = x3 – (2x2y + x2y) + (xy2 + 2xy2) – y3

   = x3 – 3x2y + 3xy2 – y3.

 

c)6x^2-(2x+5) (3x-2)

6x^2-(6X2-4x+15x-10)

6x2-6x2+4x-15x+10

-11x+10

d)(2x-1)(3x+1)+(3x+4)(3-2x)

(=)6x2-3x+2x-1+6x-6x2+12-8x

  (=)-4x+11

Nguyễn Hoàng Ngọc Hân
Xem chi tiết
Phạm Hồ Thanh Quang
6 tháng 6 2017 lúc 10:24

a)    (x + 2)(x + 3) - (x - 2)(x + 5) = 0
<=> x2 + 3x + 2x + 6 - (x2 + 5x - 2x - 10) = 0
<=> x2 + 3x + 2x + 6 - x2 - 5x + 2x + 10 = 0
<=> 2x + 16 = 0
<=> 2x = -16
<=> x = -8

b)    (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)
<=> (2x + 3)(x - 4) + (x - 5)(x - 2) - (3x - 5)(x - 4) = 0
<=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 - (3x2 - 12x - 5x + 20) = 0
<=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 - 3x2 + 12x + 5x - 20 = 0
<=> 5x = 12 - 10 + 20
<=> 5x = 22
<=>   x = 22/5

c)    (8 - 5x)(x + 2) + 4(x - 2)(x + 1) + 2(x - 2)(x + 2) = 0
<=> 8x + 16 - 5x2 - 10x + (4x - 8)(x + 1) + 2(x2 - 4) = 0
<=> 8x + 16 - 5x2 - 10x + 4x2 + 4x - 8x - 8 + 2x2 - 8 = 0
<=> x2 - 6x = 0
<=> x(x - 6) = 0
<=> x = 0 hay     x - 6 = 0
                  I<=> x      = 6

d)    (8x - 3)(3x + 2) - (4x + 7)(x + 4) = (2x + 1)(5x - 1) - 33
<=> 24x2 + 16x - 9x - 6 - (4x2 + 16x + 7x + 28) = 10x2 - 2x + 5x - 1 - 33
<=> 24x2 + 16x - 9x - 6 - 4x2 - 16x - 7x - 28 - 10x2 + 2x - 5x + 1 + 33 = 0
<=> 10x2 - 19x = 0
<=> x(10x - 19) = 0
<=> x = 0 hay      10x - 19 = 0
                  I <=> 10x       = 19
                  I <=>    x       = 19/10

Nguyễn Quang Hiếu
Xem chi tiết
Trần Phạm Minh Anh
Xem chi tiết
Văn Thị Kim Chi
Xem chi tiết
bui xuan dieu
Xem chi tiết
Cao Thị Ngọc Anh
25 tháng 1 2019 lúc 21:00

a) (2x-5) + 17 = 6

2x - 5 = 6 - 17

2x - 5 = -11

2x = -11 + 5

2x = -6

x = -6 : 2

x = -3

* Các câu be bạn cũng làm tương tự theo trật tự như vậy là được

* Các câu từ g → l thì bạn áp dụng lí thuyết sau:

Tích của hai số bằng 0 khi một trong hai số đó bằng 0

VD : g) x(x+7)=0

⇒ hoặc là x = 0 hoặc là x+7 = 0

( Bạn làm phép tính nhớ bỏ dấu ngoặc vuông trước nhé )

Nguyễn Lê Phước Thịnh
6 tháng 1 2023 lúc 0:17

b: \(\Leftrightarrow2\left(4-3x\right)=14\)

=>4-3x=7

=>3x=-3

=>x=-1

c: \(\Leftrightarrow3\left(7-x\right)=-18+12=-6\)

=>7-x=-2

=>x=9

d: \(\Leftrightarrow3x-2=-\dfrac{1}{8}\)

=>3x=15/8

=>x=5/8

e: \(\Leftrightarrow5\left(3x-2x\right)=-15\)

=>x=-3

g: =>x=0 hoặc x+7=0

=>x=0 hoặc x=-7

h: =>x+12=0 hoặc x-3=0

=>x=3 hoặc x=-12

k: =>x=0 hoặc x+2=0 hoặc 7-x=0

=>\(x\in\left\{0;-2;7\right\}\)

l: =>x-1=0 hoặc x+2=0 hoặc x+3=0

=>\(x\in\left\{1;-2;-3\right\}\)

Mai Ngọc Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 11 2023 lúc 18:56

a: \(16x^3+0,25yz^3\)

\(=0,25\cdot x^3\cdot64+0,25\cdot yz^3\)

\(=0,25\left(64x^3+yz^3\right)\)

b: \(x^4-4x^3+4x^2\)

\(=x^2\cdot x^2-x^2\cdot4x+x^2\cdot4\)

\(=x^2\left(x^2-4x+4\right)=x^2\left(x-2\right)^2\)

c: \(x^3+x^2y-xy^2-y^3\)

\(=x^2\left(x+y\right)-y^2\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-y^2\right)\)

\(=\left(x+y\right)\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\cdot\left(x+y\right)^2\)

d: \(x^3+x^2+x+1\)

\(=x^2\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+1\right)\)

e: \(x^4-x^2+2x-1\)

\(=x^4-\left(x^2-2x+1\right)\)

\(=x^4-\left(x-1\right)^2\)

\(=\left(x^2-x+1\right)\left(x^2+x-1\right)\)

f: \(2x^2-18\)

\(=2\cdot x^2-2\cdot9\)

\(=2\left(x^2-9\right)=2\left(x-3\right)\left(x+3\right)\)

g: \(x^2+8x+7\)

\(=x^2+x+7x+7\)

\(=x\left(x+1\right)+7\cdot\left(x+1\right)=\left(x+1\right)\left(x+7\right)\)

h: \(x^4y^4+4\)

\(=x^4y^4+4x^2y^2+4-4x^2y^2\)

\(=\left(x^2y^2+2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2y^2+2-2xy\right)\left(x^2y^2+2+2xy\right)\)

i: \(x^4+4y^4\)

\(=x^4+4x^2y^2+4y^4-4x^2y^2\)

\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

k: \(x^2-2x-15\)

\(=x^2-5x+3x-15\)

\(=x\left(x-5\right)+3\left(x-5\right)=\left(x-5\right)\left(x+3\right)\)