Tìm số nguyên x, biết
a) x – 2 = -6
b)15 – (x – 7) = -21
c)4.(3x – 4) – 2 = 18
d) (3x – 6) + 3 = 32
e) (3x – 6) . 3 = 32
f) (3x – 6) : 3 = 32
g) (3x – 6) - 3 = 32
h) (3x -2 mũ4 ).7mũ3 = 2.7mũ4
i) |x| = |-7| k) |x+1| = 2
l)|x – 2| = 3
m) x +|-2| = 0
o) 72 – 3.|x + 1| = 9
p) |x+1| = 3 và x+1< 0
q) (x – 2).(x + 4) = 0
a) \(x-2=-6\)
\(x=-6+2\)
\(x=-4\)
b) \(15-\left(x-7\right)=-21\)
\(x-7=36\)
\(x=43\)
c) \(4.\left(3x-4\right)-2=18\)
\(4\left(3x-4\right)=20\)
\(3x-4=5\)
\(3x=9\)
\(x=3\)
d) \(\left(3x-6\right)+3=32\)
\(3x-6=29\)
\(3x=29+6\)
\(3x=35\)
\(x=\frac{35}{3}\)
e) \(\left(3x-6\right).3=32\)
\(3x-6=\frac{32}{3}\)
\(3x=\frac{32}{3}+6\)
\(3x=\frac{50}{3}\)
\(x=\frac{50}{9}\)
f) \(\left(3x-6\right):3=32\)
\(3x-6=96\)
\(3x=102\)
\(x=34\)
g) \(\left(3x-6\right)-3=32\)
\(3x-6=35\)
\(3x=41\)
\(x=\frac{41}{3}\)
h) \(\left(3x-2^4\right).7^3=2.7^4\)
\(\left(3x-2^4\right)=2.7=14\)
\(\left(3x-16\right)=14\)
\(3x=14+16=30\)
\(x=10\)
i) \(\left|x\right|=\left|-7\right|\)
\(\left|x\right|=7\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
k) \(\left|x+1\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)
l) \(\left|x-2\right|=3\)
\(\Rightarrow\orbr{\begin{cases}x-2=3\\x-2=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}}\)
m) \(x+\left|-2\right|=0\)
\(x+2=0\)
\(x=-2\)
o) \(72-3\left|x+1\right|=9\)
\(3\left|x-1\right|=63\)
\(\left|x-1\right|=21\)
\(\Rightarrow\orbr{\begin{cases}x-1=21\\x-1=-21\end{cases}\Rightarrow\orbr{\begin{cases}x=22\\x=-20\end{cases}}}\)
p) Ta có: \(\left|x-1\right|=3\)
\(\Rightarrow\orbr{\begin{cases}x-1=3\\x-1=-3\end{cases}}\)
mà \(x+1< 0\)
\(\Rightarrow x-1=-3\)
\(\Rightarrow x=-2\)
q) \(\left(x-2\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-4\end{cases}}}\)
hok tốt!!
c,31 . 72 - 31 x 70 - 31 x2 - 31
d, 25 x 32 - 47 - 32 x ( 25 - 47 )
e, (- 3 ) ^2 + 3^3 - ( 3)^0
g, 125 x ( -61) x ( - 2 )^3 x ( - 1 ) ^ 2n
31x72 - 31x70 - 31 x 2 - 31
=31x(72 -70 -2 -1)
=31 x (-1)
= -31
những câu sau thì lam tương tự nha bạn ^_^
Tìm số nguyên x biết:
a, -45 : (3x - 17) = 3^2
b, (2x - 8).(-2x) = 0
c, 72 : |4x - 3| = 2^3
d, 2^(x+1) = 32
a) -45 : ( 3x - 17 ) = 32
3x - 17 = -45 : 9
3x - 17 = -5
3x = 12
x = 4
b) \(\left(2x-8\right)\left(-2x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-8=0\\-2x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}\)
Vậy.....
c) \(72:\left|4x-3\right|=2^3\)
\(\left|4x-3\right|=9\)
\(\Rightarrow\orbr{\begin{cases}4x-3=9\\4x-3=-9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-3}{2}\end{cases}}\)
Vậy.....
Tìm x bt:
a, 3/7-1/7.x=2/3
b, 3x mũ 2-2=72
c, (19x+2.5 mũ 2):14=(13-8) mũ 2-4 mũ 2
d, x:1/2+x:1/4+x:1/8+x:1/16+x:1/32=343
a) \(\frac{3}{7}-\frac{1}{7}x=\frac{2}{3}\)
=> \(\frac{1}{7}x=\frac{3}{7}-\frac{2}{3}=-\frac{5}{21}\)
=> \(x=-\frac{5}{21}:\frac{1}{7}=-\frac{5}{21}\cdot7=-\frac{5}{3}\)
b) \(3x^2-2=72\)=> 3x2 = 74 => x2 = 74/3 => x không thỏa mãn
c) \(\left(19x+2\cdot5^2\right):14=\left(13-8\right)^2-4^2\)
=> \(\left(19x+2\cdot25\right):14=5^2-4^2=9\)
=> \(\left(19x+50\right):14=9\)
=> \(19x+50=126\)
=> \(19x=76\)
=> x = 4
d) \(x:\frac{1}{2}+x:\frac{1}{4}+x:\frac{1}{8}+x:\frac{1}{16}+x:\frac{1}{32}=343\)
=> \(x\cdot2+x\cdot4+x\cdot8+x\cdot16+x\cdot32=343\)
=> \(x\left(2+4+8+16+32\right)=343\)
=> x . 62 = 343
=> x = 343/62
1. Tìm x, y ∈ N biết
a) 19 - (x + 23) = 24 - 6
b) 43 + 32 : (x + 1) - 65
c) (2x + 1)3 - 52 = 102
d) 15 . 2x - 7 . 2 +x-2 = 212
e) 1 + 3 + 32 + .... + 3x = 314
g) 2x - 2y = 7
2. a) So sánh 2150 và 3100
b) Tìm chữ số tận cùng của A = 22023 + 32024
a)19 - (x + 23)=24- 6
19 - (x + 23) = 16 - 6
19 - (x + 23) = 10
(x + 23) = 19 - 10
x + 23= 9
x + 23 = 33
x + 2 = 3
x= 3-2
x= 1
sửa lại :
a)19 - (x + 23)=24- 6
19 - (x + 23) = 16 - 6
19 - (x + 23) = 10
(x + 23) = 19 - 10
x + 23= 9
=> x + 8= 9 x= 1
=> x + 8 =-9 x= -17
Giải PT:
(3x)^2-4(x-3)^2=0
x^3+x^2+4=0
(x-1)^2.(x-3)+(1-x)^2.(x+3)=72
a.\(\left(3x\right)^2-4\left(x-3\right)^2=0\)
<=> \(9x^2-4\left(x^2-6x+9\right)=0\)
<=> \(9x^2-4x^2+24x-36=0\)
<=>\(5x^2+24x-36=0\)
giải pt bậc hai thì pt có hai nghiệm x={1,2;-6}
a) (3x)2 - 4(x- 3)2 = 0
\(\Leftrightarrow\) (3x - 2x + 6)(3x + 2x - 6) = 0
\(\Leftrightarrow\) (x+ 6)(5x - 6) = 0
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x+6=0\\5x-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\x=\dfrac{6}{5}\end{matrix}\right.\)
Vậy phượng trình có tập nghiệm là: S = {-6;\(\dfrac{6}{5}\)}
b) x3 + x2 + 4 = 0
\(\Leftrightarrow\) x3 + 2x2 - x2 + 4 = 0
\(\Leftrightarrow\) (x3 + 2x2) - (x2 - 4) = 0
\(\Leftrightarrow\) x2(x + 2) - (x + 2)(x - 2) = 0
\(\Leftrightarrow\) (x2 - x + 2)(x + 2) = 0
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x^2-x+2=0\left(vôli\right)\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\) x = -2
Vậy phương trình có tập nghiệm là: S={-2}
c) (x - 1)2(x - 3) + (1 - x)2(x + 3) = 72
\(\Leftrightarrow\) (x - 1)2(x - 3) + (x - 1)2(x + 3) = 72
\(\Leftrightarrow\) (x - 1)2(x - 3 + x + 3) = 72
\(\Leftrightarrow\) 2x(x2 - 2x + 1) = 72
\(\Leftrightarrow\) 2x3 - 4x2 + 2x - 72 = 0
\(\Leftrightarrow\) 2(x3 - 2x2 + x - 36) = 0
\(\Leftrightarrow\) x3 - 2x2 + x - 36 = 0
\(\Leftrightarrow\) x3 - 4x2 + 2x2 - 8x + 9x - 36 = 0
\(\Leftrightarrow\) (x3 - 4x2) + (2x2 - 8x) + (9x - 36) = 0
\(\Leftrightarrow\) x2(x - 4) + 2x(x - 4) + 9(x - 4)= 0
\(\Leftrightarrow\) (x2 + 2x + 9)(x - 4) = 0
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x^2+2x+9=0\left(vôli\right)\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\) x = 4
Vậy phương trình có tập nghiệm là: S={4}
Chứng minh rằng:
A = 1/3 + 1/32 + 1/33 + ..........+ 1/399 < 1/2
B = 3/12x 22 + 5/22 x 32 + 7/32 x 42 +............+ 19/92 x 102 < 1
C = 1/3 + 2/32 + 3/33 + 4/34 +.........+ 100/3100 ≤ 0
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
1) Tính giá trị của các biểu thức sau bằng cách hợp lí
a)125 . (-61) . (-23 ) . (-1)2n ( n thuộc N*)
b) 136 . (-47) + 36 . 47
c) (-48) . 72 + 36 . 47
d) (-125) . (+25) . (-32) . (-14)
e) (-31) . (+52) + (-26) . (-162)
2) Tìm x biết
a) x (x + 3) = 0
b) (x - 2) . (5 -x) = 0
c) (x-1) . (x2 + 1) = 0
Giải các phương trình:
a) 3 + x − 2 = 0 ; b) − x + 2 + 1 = 0 ;
c) 1 − 2 x = 3 x + 1 ; d) x + 1 = 3 2 − x
a) x ∈ { - 5 ; 1 } b) x ∈ ∅
c) x = 0 . d) x = 1 4