a.\(\left(3x\right)^2-4\left(x-3\right)^2=0\)
<=> \(9x^2-4\left(x^2-6x+9\right)=0\)
<=> \(9x^2-4x^2+24x-36=0\)
<=>\(5x^2+24x-36=0\)
giải pt bậc hai thì pt có hai nghiệm x={1,2;-6}
a) (3x)2 - 4(x- 3)2 = 0
\(\Leftrightarrow\) (3x - 2x + 6)(3x + 2x - 6) = 0
\(\Leftrightarrow\) (x+ 6)(5x - 6) = 0
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x+6=0\\5x-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\x=\dfrac{6}{5}\end{matrix}\right.\)
Vậy phượng trình có tập nghiệm là: S = {-6;\(\dfrac{6}{5}\)}
b) x3 + x2 + 4 = 0
\(\Leftrightarrow\) x3 + 2x2 - x2 + 4 = 0
\(\Leftrightarrow\) (x3 + 2x2) - (x2 - 4) = 0
\(\Leftrightarrow\) x2(x + 2) - (x + 2)(x - 2) = 0
\(\Leftrightarrow\) (x2 - x + 2)(x + 2) = 0
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x^2-x+2=0\left(vôli\right)\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\) x = -2
Vậy phương trình có tập nghiệm là: S={-2}
c) (x - 1)2(x - 3) + (1 - x)2(x + 3) = 72
\(\Leftrightarrow\) (x - 1)2(x - 3) + (x - 1)2(x + 3) = 72
\(\Leftrightarrow\) (x - 1)2(x - 3 + x + 3) = 72
\(\Leftrightarrow\) 2x(x2 - 2x + 1) = 72
\(\Leftrightarrow\) 2x3 - 4x2 + 2x - 72 = 0
\(\Leftrightarrow\) 2(x3 - 2x2 + x - 36) = 0
\(\Leftrightarrow\) x3 - 2x2 + x - 36 = 0
\(\Leftrightarrow\) x3 - 4x2 + 2x2 - 8x + 9x - 36 = 0
\(\Leftrightarrow\) (x3 - 4x2) + (2x2 - 8x) + (9x - 36) = 0
\(\Leftrightarrow\) x2(x - 4) + 2x(x - 4) + 9(x - 4)= 0
\(\Leftrightarrow\) (x2 + 2x + 9)(x - 4) = 0
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x^2+2x+9=0\left(vôli\right)\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\) x = 4
Vậy phương trình có tập nghiệm là: S={4}