Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Quỳnh Chi Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2023 lúc 8:57

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=5^2-3^2=16\)

=>AC=4(cm)

Xét ΔBCD vuông tại B có BA là đường cao

nên \(BA^2=AC\cdot AD\)

=>\(4\cdot AD=3^2=9\)

=>AD=2,25(cm)

b: ΔBAC vuông tại A có AE là đường cao

nên \(BE\cdot BC=BA^2\left(1\right)\)

Xét ΔBAD vuông tại A có AF là đường cao

nên \(BF\cdot BD=BA^2\left(2\right)\)

Từ (1),(2) suy ra \(BE\cdot BC=BF\cdot BD\)

c: BE*BC=BF*BD

=>\(\dfrac{BE}{BD}=\dfrac{BF}{BC}\)

Xét ΔBEF vuông tại B và ΔBDC vuông tại B có

\(\dfrac{BE}{BD}=\dfrac{BF}{BC}\)

Do đó: ΔBEF đồng dạng với ΔBDC

=>\(\widehat{BFE}=\widehat{BCD}\)

akakak21
Xem chi tiết
akakak21
12 tháng 6 2021 lúc 10:29

jup mk với mik cần gấp

 

Hồng Nhan
12 tháng 6 2021 lúc 11:42

Câu c) sai đề phải k ạ?? EA/EA 

 

Hồng Nhan
12 tháng 6 2021 lúc 11:57

A B C H D E 1 2

Minh Quân Nguyễn
Xem chi tiết
Lonely Member
17 tháng 2 2016 lúc 20:09

mih biet

k nha

roi mih giai cho

Hòa Phan
Xem chi tiết
Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 3 2022 lúc 15:16

a: BC=10cm

Xét ΔABC có AD là đường phân giác

nên BD/AB=CD/AC

=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

Do đó: BD=30/7(cm); CD=40/7(cm)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

Nguyễn Ngọc Huy Toàn
10 tháng 3 2022 lúc 15:21

a.Áp dụng định lý pitago vào tam giác vuông ABC, ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)

Áp dụng t/c đường phân giác góc B, ta có:

\(\dfrac{AB}{CB}=\dfrac{AD}{CD}\) 

\(\Leftrightarrow\dfrac{6}{10}=\dfrac{AD}{CD}\) \(\Leftrightarrow\dfrac{3}{5}=\dfrac{AD}{CD}\) \(\Leftrightarrow\dfrac{CD}{5}=\dfrac{AD}{3}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{CD}{5}=\dfrac{AD}{3}=\dfrac{CD+AD}{5+3}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)

\(\Rightarrow CD=1.5=5cm\)

\(\Rightarrow AD=1.3=3cm\)

b. Xét tam giác AHB và tam giác ABC, có:

\(\widehat{BAC}=\widehat{AHB}=90^0\)

\(\widehat{B}:chung\)

Vậy tam giác AHB đồng dạng tam giác ABC ( g.g )

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{HB}{AB}\)

\(\Leftrightarrow AB^2=HB.BC\)

Phạm Thị Ngọc Khánh
Xem chi tiết
Nguyễn Huy Tú
28 tháng 5 2021 lúc 15:47

A B C 5 5 6 M N

a, Vì CN là phân giác ^C nên : \(\frac{AC}{BC}=\frac{AN}{NB}\)( t/c ) \(\Rightarrow\frac{AC}{AN}=\frac{BC}{NB}\)( tỉ lệ thức )

Vì BM là phân giác ^B nên : \(\frac{AB}{BC}=\frac{AM}{MC}\)( t/c ) \(\Rightarrow\frac{AB}{AM}=\frac{BC}{MC}\)( tỉ lệ thức )

mà \(AB=AC\)( do tam giác ABC cân ) suy ra : \(\frac{AB}{AM}=\frac{AC}{AN}\)

Vậy MN // BC ( theo talét đảo ) 

Khách vãng lai đã xóa
Nguyễn Huy Tú
28 tháng 5 2021 lúc 15:50

bổ sung hộ mình phần a là NB = MC ( do là phân giác mà tam giác ABC cân )

b, Xét tam giác ANC và tam giác AMB ta có : 

^A _ chung 

\(\frac{AC}{AN}=\frac{AB}{AM}\)( cma ) 

Vậy tam giác ANC ~ tam giác AMB ( c.g.c ) 

Khách vãng lai đã xóa
Nguyễn Huy Tú
28 tháng 5 2021 lúc 15:56

c, Ta có : \(\frac{AB}{BC}=\frac{AM}{MC}\Rightarrow\frac{MC}{BC}=\frac{AM}{AB}\)( tỉ lệ thức )

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{MC}{BC}=\frac{AM}{AB}=\frac{MC+AM}{AB+BC}=\frac{5}{5+11}=\frac{5}{16}\)

\(\Rightarrow\frac{AM}{5}=\frac{5}{16}\Rightarrow AM=\frac{25}{16}\)cm 

Vì MN // BC ( cma ) Theo hệ quả Ta lét ta có : 

\(\frac{AM}{AB}=\frac{MN}{BC}\Rightarrow MN=\frac{AM.BC}{AB}=\frac{\frac{25}{16}.6}{5}=\frac{15}{8}\)cm 

Khách vãng lai đã xóa
Anh Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 22:36

a) Xét ΔABC có 

\(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{4}{5}\)
nên \(\widehat{C}\simeq53^0\)

\(\Leftrightarrow\widehat{B}=37^0\)

b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{4}=\dfrac{CD}{3}\)

mà BD+CD=5

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{4}=\dfrac{CD}{3}=\dfrac{BD+CD}{4+3}=\dfrac{5}{7}\)

Do đó: \(BD=\dfrac{20}{7}cm;CD=\dfrac{15}{7}cm\)

8/5_06 Trương Võ Đức Duy
Xem chi tiết
phạm
20 tháng 2 2022 lúc 9:36

bạn cần bài nào

Ng Ngọc
20 tháng 2 2022 lúc 9:38

2 BÀI CHẢ BT HỎI BÀI NÀO

Tạ Phương Linh
20 tháng 2 2022 lúc 9:40

Cần bài nào hả bn

Phan Thị Linh Chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2023 lúc 21:52

a: \(AC=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)

b: ΔDEC vuông tại E 

=>DE<DC

c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

d: Xét ΔDBC có góc DBC=góc DCB

nên ΔDBC cân tại D

e: gọi giao của CF và AB là H

Xét ΔBHC có

BF,CA là đường cao

BF cắt CA tại D

=>D là trực tâm

=>HD vuông góc BC tại E

=>H,D,E thẳng hàng

=>BA,DE,CF là trực tâm