Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuấn Trần
Xem chi tiết
Không Tên
27 tháng 4 2018 lúc 21:45

a)    \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)\(=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) (vì  a+b+c = 1)

\(=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

C/m  BĐT phụ:   \(\frac{x}{y}+\frac{y}{x}\ge2\)   với  x,y dương

             \(\Leftrightarrow\)\(x^2+y^2\ge2xy\)

            \(\Leftrightarrow\) \(x^2-2xy+y^2\ge0\)

            \(\Leftrightarrow\) \(\left(x-y\right)^2\ge0\)  luôn đúng

Dấu "=" xảy ra   \(\Leftrightarrow\)\(x=y\)

Áp dụng BĐT trên ta có:   \(\frac{a}{b}+\frac{b}{a}\ge2;\) \(\frac{a}{c}+\frac{c}{a}\ge2;\) \(\frac{b}{c}+\frac{c}{b}\ge2\)

\(\Rightarrow\)\(VT=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge3+2+2+2=9\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b=c\)

Vậy    \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b=c\)

Scarlett
Xem chi tiết
Minhmetmoi
7 tháng 10 2021 lúc 12:47

Đk: \(x\ge1\)

\(\Leftrightarrow4\left(2\sqrt{x-1}-1\right)+\left(4x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\dfrac{4\left(4x-5\right)}{2\sqrt{x-1}+1}+\left(4x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(4x-5\right)\left(\dfrac{4}{2\sqrt{x-1}+1}+x+2\right)=0\)

\(\Leftrightarrow x=\dfrac{5}{4}\)(Dễ thấy ngoặc to lớn hơn 0 với \(x\ge1\))

Minhmetmoi
8 tháng 10 2021 lúc 13:31

Muốn giải mấy bài kiểu này thì mình hay đoán nghiệm trước

Việc đoán nghiệm thì có thể dùng kinh nghiệm hoặc bấm máy tính

Ở đây mình đoán được nghiệm là x=5/4 nên ta sẽ cố gắng tạo ra nhân tử dạng

4x-5 hoặc x-(5/4) ở đầy mình chọn nhân tử 4x-5

Trong những phương trình chứa căn thức thì để tạo nhân tử thì cách thường dùng nhất là phép liên hợp

Phép liên hợp là phép kiểu: \(\sqrt{a}-\sqrt{b}=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\)

Ok, ta biến đổi pt lại để tạo nhân tử 4x-5:

\(\left(8\sqrt{x-1}-4\right)+\left(4x^2+3x-10\right)=0\) (ở đây ta thay x=5/4 vào 8căn(x-1) thì được 4 nên ta sẽ ghép với 4, còn phần còn lại của pt thì gộp lại chung)

\(\dfrac{4\left(2\sqrt{x-1}-1\right)\left(2\sqrt{x-1}+1\right)}{2\sqrt{x-1}+1}+\left(4x-5\right)\left(x+2\right)=0\)(sử dụng phép liên hợp)

\(\Leftrightarrow\dfrac{4\left(4x-5\right)}{2\sqrt{x-1}+1}+\left(4x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(4x-5\right)\left(\dfrac{4}{2\sqrt{x-1}+1}+x+2\right)=0\)

Ở đây thì với đk x>=1 thì ngoặc to sẽ lớn hơn 0 nên kêt luận x=5/4

tiểu thư họ nguyễn
Xem chi tiết
Phạm Hoàng Việt
13 tháng 2 2016 lúc 13:57

x(3x-1)-(3x+2)(x-5)=0

<=> 3x^2-x-3x^2+15x-2x+10=0

<=>12x+10=0

<=>12x=-10

<=>x=-5/6

D.S Gaming
Xem chi tiết
ShinBaNgón...!
Xem chi tiết
Yeutoanhoc
28 tháng 2 2021 lúc 15:07

`(x+1)(x+3)=2x^2-2`

`<=>x^2+x+3x+3=2x^2-2`

`<=>x^2-4x-5=0`

`<=>x^2-5x+x-5=0`

`<=>x(x-5)+(x-5)=0`

`<=>(x-5)(x+1)=0`

`<=>` $\left[ \begin{array}{l}x=5\\x=-1\end{array} \right.$

Vậy `S={5,-1}`

Nguyễn Lê Phước Thịnh
28 tháng 2 2021 lúc 15:08

Ta có: \(\left(x+1\right)\left(x+3\right)=2x^2-2\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2x^2+2=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x+3-2\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3-2x+2\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(5-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\5-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

Vậy: S={-3;5}

Tuấn Trần
Xem chi tiết
kimgiabao
13 tháng 4 2018 lúc 22:49

bó tay

Trần Thị Nhung
13 tháng 4 2018 lúc 22:59

theo BĐT CÔ SI ta đc 

a+b+c \(\ge\)\(3\sqrt[3]{abc}\)

 1/ a + 1/ b + 1/c  \(\ge\)\(3\sqrt[3]{\frac{1}{abc}}\)

nhân vế vs vế ta đc ( a+ b+c) (  1/ a + 1/ b + 1/c ) \(\ge\)9

maf a +b+c = 1 nên ......bn tự lm nha

Bui Huyen
15 tháng 4 2018 lúc 10:32

xét( 1/a+1/b+1/c)(a+b+c)=3+a/b+a/c+b/c+b/a+c/a+c/b

áp dụng cô-si

a/b+b/a=a2+b2/ab>=2

tương tự a/c+c/a>=2

               c/b+b/c>=2

=>(1/a+1/b+1/c)(a+b+c)>=2+2+2+3=9

=>1/a+1/b+1/c>=9(đpcm)

Duong Thi Minh
Xem chi tiết
alibaba nguyễn
1 tháng 5 2017 lúc 16:48

Theo đề bài thì ta có:

\(\hept{\begin{cases}3x_1^2+5x_1+4-m=0\\x_2^2-5x_2+4+m=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}9x_1^2+15x_1+12-3m=0\left(1\right)\\x_2^2-5x_2+4+m=0\left(2\right)\end{cases}}\)

Lấy (1) - (2) ta được

\(\left(9x_1^2-x_2^2\right)+\left(15x_1+5x_2\right)+8-4m=0\)

\(\Leftrightarrow\left(3x_1+x_2\right)\left(3x_1-x_2+5\right)+8-4m=0\)

\(\Leftrightarrow\left(3x_1+x_2\right)\left(3x_1+x_2-2x_2+5\right)+8-4m=0\)

\(\Leftrightarrow\left(6-2x_2\right)+8-4m=0\)

\(\Leftrightarrow x_2=7-2m\)

Thế lại vô (2) ta được

\(\left(7-2m\right)^2-5\left(7-2m\right)+4+m=0\)

\(\Leftrightarrow4m^2-17m+18=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=2\\m=\frac{9}{4}\end{cases}}\)

Duong Thi Minh
1 tháng 5 2017 lúc 16:59

Oh thanks you very muck!!!!

Hacker lỏd
Xem chi tiết
Linh Chii
Xem chi tiết
ILoveMath
31 tháng 7 2021 lúc 10:25

( 3x-1) ( x2+ 9) = (3x-1) (7x-10)

⇒( 3x-1) ( x2+ 9) - (3x-1) (7x-10) = 0

⇒( 3x-1) (( x2+ 9)-(7x-10)) = 0

⇒( 3x-1)(x2+9-7x+10)=0

⇒( 3x-1)(x2-7x+19)=0

\(\left[{}\begin{matrix}3x-1=0\\x^2-7x+19=0\end{matrix}\right.\)

3x-1=0

⇒x=\(\dfrac{1}{3}\)

x2-7x+19=0

⇒ \(x^2-\dfrac{7}{2}x-\dfrac{7}{2}x+\left(\dfrac{7}{2}\right)^2+\dfrac{27}{4}=0\)

⇒ \(\left(x-\dfrac{7}{2}\right)^2+\dfrac{27}{4}=0\)

vì \(\left(x-\dfrac{7}{2}\right)^2\ge0\)\(\dfrac{27}{4}>0\)

⇒ \(\left(x-\dfrac{7}{2}\right)^2+\dfrac{27}{4}>0\)

⇒ x vô nghiệm

Vậy x= \(\dfrac{1}{3}\)

 

Phong Thần
31 tháng 7 2021 lúc 10:25

\(\left(3x-1\right)\left(x^2+9\right)=\left(3x-1\right)\left(7x-10\right)\\ \Leftrightarrow\left(3x-1\right)\left(x^2+9\right)-\left(3x-1\right)\left(7x-10\right)\\ \Leftrightarrow\left(3x-1\right)\left(x^2-7x+12\right)=0\\ \Leftrightarrow\left(3x-1\right)\left(x^2-4x-3x+12\right)=0\\ \Leftrightarrow\left(3x-1\right)\left[x\left(x-4\right)-3\left(x-4\right)\right]=0\\ \Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}3x-1=0\\x-3=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\x=3\\x=4\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
31 tháng 7 2021 lúc 14:06

Ta có: \(\left(3x-1\right)\left(x^2+9\right)=\left(3x-1\right)\left(7x-10\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2+9-7x+10\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2-7x+19\right)=0\)

\(\Leftrightarrow3x-1=0\)

hay \(x=\dfrac{1}{3}\)