Giải phương trình nghiệm nguyên
6x2 =y(y+1)(2y+1)
Giải phương trình nghiệm nguyên:
x2=y(y+1)(2y+1)
xét y=0=>x=0. xét y=-1 =>x=0. Xét y=1=>x^2=6(không có nghiệm nguyên)
Xét y thuộc nhóm các số nguyên còn lại. Ta thấy y,y+1,2y+1 là 3 số nguyên tố cùng nhau( bạn tự cm nha)
=> y=a^2;y+1=b^2;2y+1=c^2=>(b-a)(a+b)=1(*);(c-a)(c+a)=b^2(=y+1)
(*)=>b-a=a+b=1 hay b-a=a+b=-1
=>a=0;b=1 hay b=-1; a=0=> y=0 ( vô lí)
xét y=0=>x=0. xét y=-1 =>x=0. Xét y=1=>x^2=6(không có nghiệm nguyên)
Xét y thuộc nhóm các số nguyên còn lại.
Ta thấy y,y+1,2y+1 là 3 số nguyên tố cùng nhau( bạn tự cm nha)
=> y=a^2;y+1=b^2;2y+1=c^2
=>(b-a)(a+b)=1(*);(c-a)(c+a)=b^2(=y+1) (*)
=>b-a=a+b=1 hay b-a=a+b=-1
=>a=0;b=1 hay b=-1; a=0=> y=0 ( vô lí)
Giải phương trình nghiệm nguyên \(x^2+y^2+2x+2y=x^2y^2-1\)
\(\Leftrightarrow x^2+y^2+2xy+2x+2y+1=x^2y^2+2xy+1-1\)
\(\Leftrightarrow\left(x+y+1\right)^2=\left(xy+1\right)^2-1\)
\(\Leftrightarrow\left(xy+1\right)^2-\left(x+y+1\right)^2=1\)
\(\Leftrightarrow\left(xy+x+y+2\right)\left(xy-x-y\right)=1\)
Phương trình ước số cơ bản
help me
1, giải phương tình nghiệm nguyên dương x^2y+x+y=xy^2z+yz+7z
2,giải phương trình nghiệm tự nhiên 2^x+3^y=z^2
3,giải phương trình nghiệm nguyên dương x^2+x+1=xyz-z
Cho hệ phương trình {3X - 2y = 1 {mx + 3 y = 4
A)Giải hệ phương trình khi m = 1
B) tìm m để hệ phương trình có nghiệm x = -1/3 y = -1
\(\hept{\begin{cases}3x-2y=1\\mx+3y=4\end{cases}}\)
\(\hept{\begin{cases}3x=1+2y\\mx+3y=4\end{cases}}\)
\(\hept{\begin{cases}x=1+\frac{2y}{3}\\mx+3y=4\end{cases}}\)
a, Khi thay m = 1 thì biểu thức mx + 3y ta đc
\(x+3y=4\)
Hệ phương trình trở thành : \(\hept{\begin{cases}x=1+\frac{2y}{3}\\x+3y=4\end{cases}}\)
Ta thay x vào biểu thức x + 3y = 4 ta đc
\(1+\frac{2y}{3}+3y=4\)
\(1+\frac{2y}{3}+\frac{9y}{3}-4=0\)
\(-3+\frac{11y}{3}=0\)
\(\frac{11y}{3}=3\Leftrightarrow11y=9\Leftrightarrow y=\frac{9}{11}\)
Ta thay y = 9/11 vào biểu thức x + 3y ta đc
\(x+3.\frac{9}{11}=4\)
\(x+\frac{27}{11}=4\)
\(x=\frac{17}{11}\)
Vậy \(\left\{x;y\right\}=\left\{\frac{17}{11};\frac{9}{11}\right\}\)
giải phương trình nghiệm nguyên:
x(y^2+1)+2y(x-2)=0
giải hệ phương trình \(\left\{{}\begin{matrix}mx+2y=m+1\\x-y=2\end{matrix}\right.\)
a, giải hệ phương trình khi m=2
b, tìm m để hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn xy = x+y+2
`x-y=2<=>x=y+2` thay vào trên
`=>m(y+2)+2y=m+1`
`<=>y(m+2)=m+1-2m`
`<=>y(m+2)=1-2m`
Để hpt có nghiệm duy nhất
`=>m+2 ne 0<=>m ne -2`
`=>y=(1-2m)/(m+2)`
`=>x=y+2=5/(m+2)`
`xy=x+y+2`
`<=>(5-10m)/(m+2)=(6-2m)/(m+2)+2`
`<=>(5-10m)/(m+2)=10/(m+2)`
`<=>5-10m=10`
`<=>10m=-5`
`<=>m=-1/2(tm)`
Vậy `m=-1/2` thì HPT có nghiệm duy nhât `xy=x+y+2`
`a)m=2`
$\begin{cases}2x+2y=3\\x-y=2\end{cases}$
`<=>` $\begin{cases}2x+2y=3\\2x-2y=4\end{cases}$
`<=>` $\begin{cases}4y=-1\\x=y+2\end{cases}$
`<=>` $\begin{cases}y=-\dfrac14\\y=\dfrac74\end{cases}$
Vậy m=2 thì `(x,y)=(7/4,-1/4)`
Sửa đoạn `xy=x+y+2`
``<=>(5-10m)/(m+2)^2=(6-2m)/(m+2)+2`
`<=>(5-10m)/(m+2)^2=10/(m+2)`
`<=>5-10m=10(m+2)`
`<=>1-2m=2m+4`
`<=>4m=-3`
`<=>m=-3/4(tm)`
Giải phương trình nghiệm nguyên: \(x^2y-5x^2-xy-x+y-1=0\)
Giải phương trình nghiệm nguyên:
x(y + 2) + 2y = -1
x( y + 2 ) + 2y = -1
<=> x( y + 2 ) + 2y + 1 = 0
<=> x( y + 2 ) + 2( y + 2 ) - 3 = 0
<=> ( x + 2 )( y + 2 ) - 3 = 0
<=> ( x + 2 )( y + 2 ) = 3
Ta có bảng sau :
x+2 | 1 | -1 | 3 | -3 |
y+2 | 3 | -3 | 1 | -1 |
x | -1 | -3 | 1 | -5 |
y | 1 | -5 | -1 | -3 |
Vậy ( x ; y ) = { ( -1 ; 1 ) , ( -3 ; -5 ) , ( 1 ; -1 ) , ( -5 ; -3 ) }
Giải phương trình nghiệm nguyên: \(x^2y^2\left(x+y\right)+x=2+y\left(x+1\right)\).