SO SÁNH \(C=\frac{100^{16}+1}{100^{17}+1}\) VS \(D=\frac{100^{15}+1}{100^{16}+1}\)
$So$ $sánh$
$C$ = $\frac{100^{16}+1}{100^{17}+1}$ và $D$ = $\frac{100^{15}+1}{100^{16}+1}$
So sánh:
a) A=\(\frac{15^{16}+1}{15^{17}+1}\)và B=\(\frac{15^{15}+1}{15^{16}+1}\)
b) A=\(\frac{100^{100}+1}{100^{90}+1}\)và B=\(\frac{100^{99}+1}{100^{98}+1}\)
a) \(A=\frac{15^{16}+1}{15^{17}+1}\)và\(B=\frac{15^{15}+1}{15^{16}+1}\)
ta có \(A=\frac{15^{16}}{15^{17}}\)và\(B=\frac{15^{15}}{15^{16}}\)
ta dễ nhận thấy phần cơ số của hai phân số A và B = nhau
mà phần mũ của các lũy thừa phân số A đều lớn hơn phân số B
\(\Rightarrow\frac{15^{16}}{15^{17}}>\frac{15^{15}}{15^{16}}\)
\(\Rightarrow\frac{15^{16}+1}{15^{17}+1}>\frac{15^{15}+1}{15^{16}+1}\)
\(\Rightarrow A>B\)
\(A=\frac{15^{16}+1}{15^{17}+1}vaB=\frac{15^{15}+1}{15^{16}+1}\)
+)Ta thấy\(A=\frac{15^{16}+1}{15^{17}+1}< 1\)
\(\Rightarrow A< \frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15.\left(15^{15}+1\right)}{15.\left(15^{15}+1\right)}=\frac{15^{15}+1}{15^{16}+1}=B\)
Vậy A<B
b)Đề sai
Chúc bạn học tốt
\(C=\frac{100^{16}+1}{100^{17}+1}\)và \(D=\frac{100^{15}+1}{100^{16}+1}\)
Ta có :
\(100C=\frac{100^{17}+100}{100^{17}+1}=\frac{100^{17}+1+99}{100^{17}+1}=\frac{100^{17}+1}{100^{17}+1}+\frac{99}{100^{17}+1}=1+\frac{99}{100^{17}+1}\)
\(100D=\frac{100^{16}+100}{100^{16}+1}=\frac{100^{16}+1+99}{100^{16}+1}=\frac{100^{16}+1}{100^{16}+1}+\frac{99}{100^{16}+1}=1+\frac{99}{100^{16}+1}\)
Vì \(\frac{99}{100^{17}+1}< \frac{99}{100^{16}+1}\) nên \(1+\frac{99}{100^{17}+1}< 1+\frac{99}{100^{16}+1}\) hay \(100A< 100B\)
\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
Ta có : \(100C=\frac{100^{17}+100}{100^{17}+1}=1+\frac{100}{100^{17}+1}\)
\(100D=\frac{100^{16}+100}{100^{16}+1}=1+\frac{100}{100^{16}+1}\)
Mà \(\frac{100}{100^{17}+1}< \frac{100}{100^{16}+1}\)
\(\Rightarrow10C< 10D\Rightarrow C< D\)
I. So sánh :
a, \(A=\frac{100^9+4}{100^9-1}\)và \(B=\frac{100^9+1}{100^9-4}\)
b, \(C=\frac{100^{16}+1}{100^{17}+1}\)và \(D=\frac{100^{15}+1}{100^{16}+1}\)
So sánh
a) \(\left(\frac{1}{10}\right)^{15}\) và \(\left(\frac{3}{10}\right)^{20}\)
b) \(A=\frac{13^{15}+1}{13^{16}+1}\) và B = \(\frac{13^{16}+1}{13^{17}+1}\)
c) \(A=\frac{1999^{1999}+1}{1999^{1998}+1}\) và \(B=\frac{1999^{2000}+1}{1999^{1999}+1}\)
d) \(A=\frac{100^{100}+1}{100^{99}+1}\) và \(B=\frac{100^{69}+1}{100^{68}+1}\)
Bài 1 So sánh
\(\left(\frac{-1}{16}\right)^{100}\)va \(\left(\frac{-1}{2}\right)^{500}\)
Bài 2 So sánh
A =\(\frac{100^{100}+1}{100^{99}+1}\)Va B =\(\frac{100^{69}+1}{100^{68}+1}\)
Các p ơi giúp mink vs
Bài 1: \(\left(\frac{-1}{16}\right)^{100}=\frac{1}{\left(2^4\right)^{100}}=\frac{1}{2^{400}}>\frac{1}{2^{500}}=\left(\frac{-1}{2}\right)^{500}.\)
Bài 2: \(100^{99}+1>100^{68}+1\Rightarrow\frac{1}{100^{99}+1}< \frac{1}{100^{68}+1}\Rightarrow\frac{-99}{100^{99}+1}>\frac{-99}{100^{68}+1}\)
\(\Rightarrow100+\frac{-99}{100^{99}+1}>100+\frac{-99}{100^{68}+1}\Rightarrow\frac{100^{100}+1}{100^{99}+1}>\frac{100^{69}+1}{100^{68}+1}\)
So sánh
a) -47/49 và -68/69
b) 27/73 và 271/731
c) 100^16+1/100^17+1 và 100^15+1/100^16+1
Help me
Mik bão tick cho ai trả lời nhanh nhất
So sánh D với \(\frac{3}{4}\)
\(D=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+...+\frac{1}{100}+\frac{1}{121}\)
so sánh
a.-76/75vs-121/122
b.199/222vs457/460
c.499/99vs999/199
d.-495/493vs-789/787
e.A=15^6+1/15^17+1vsB=15^15+1/15^16+1
f.C=100^100+1/100^90+1vsD=100^99+1/100^89+1
Ối trời !Sao mà dài thế này
Làm sao làm cho nổi