Bài 1: Cho \(\frac{x+y-3}{z}=\frac{x+z+2}{y}=\frac{y+z+1}{x}=\frac{1}{x+y+z}\). Tìm x;y;z.
Bài 2: Cho \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\). Tìm x.
Bài 3: Cho \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\). Chứng minh rằng \(\left[{}\begin{matrix}a=c\\a+b+c+d=0\end{matrix}\right.\).
Bài 4: Tìm \(a_1;a_2;a_3;...;a_{100}\)biết:
\(\frac{a_1-1}{100}=\frac{a_2-2}{99}=\frac{a_3-3}{98}=...=\frac{a_{100}-100}{1}\)và \(a_1+a_2+a_3+...+a_{100}=10100\).
Bài 5: Tìm x biết:
a) \(\left[\frac{3x+1}{5}\right]=1\)
b) \(\left[\frac{7x-5}{3}\right]=-2\)
Bài 6: Tìm \(\left[x\right]\) biết:
a) \(3< x< \frac{17}{5}\)
b) \(\frac{-9}{2}< x< -4\)
c) \(\frac{-11}{3}< x< \frac{10}{-3}\)
1/ Chứng minh: \(C=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\). Chứng minh: C < \(\frac{3}{16}\)
Cho biểu thức \(C=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
Chứng minh: \(C< \frac{3}{16}\)
CMR:
a) \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}< 1\)
b) \(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\)
a) CM: A2= \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{100}}>10\)
b) CM: A3= \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\frac{4}{5!}+...+\frac{99}{100!}< 1\)
cho biểu thức: \(A=\left(\frac{-1}{3}\right)+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
tính \(B=4\left|A\right|+\frac{1}{3^{100}}\)
1 tính
a, S= \(3+3^2+3^3+....+3^{100}\)
b, M= \(\frac{1}{4}+\frac{1}{4^2}+.....+\frac{1}{4^{100}}\)
so sánh các biểu thức sau:
a) A = \(\dfrac{13^{15}+1}{13^{16}+1}\) và B = \(\dfrac{13^{16}+1}{13^{17}+1}\)
b) A = \(\dfrac{1999^{1999}+1}{1999^{1998}+1}\) và B = \(\dfrac{1999^{2000}+1}{1999^{1999}+1}\)
c) A = \(\dfrac{100^{100}+1}{100^{99}+1}\) và B = \(\dfrac{100^{69}+1}{100^{68}+1}\)
Chứng minh: \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...................+\frac{100}{3^{100}}< \frac{3}{4}\)