Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khải Lê
Xem chi tiết
PhungHuyHoang
Xem chi tiết
Nguyễn Thái Sơn
Xem chi tiết
Akai Haruma
13 tháng 7 2020 lúc 9:38

Lời giải:

ĐKXĐ: \(x\geq 0; x\neq 1\)

Ta có:

\(A=\frac{x+\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+2)}+\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}=\frac{x+\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+2)}+\frac{\sqrt{x}+2}{(\sqrt{x}-1)(\sqrt{x}+2)}+\frac{\sqrt{x}-1}{(\sqrt{x}+2)(\sqrt{x}-1)}\)

\(=\frac{x+\sqrt{x}+1+\sqrt{x}+2+\sqrt{x}-1}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{x+3\sqrt{x}+2}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{(\sqrt{x}+1)(\sqrt{x}+2)}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

Doanh Phung
Xem chi tiết
tạ quang huy
7 tháng 8 2019 lúc 21:05

fghdddđvb

Doanh Phung
7 tháng 8 2019 lúc 21:06

m muon dau cua m co mot lo thung ko?

Phạm Thị Thùy Linh
7 tháng 8 2019 lúc 21:16

\(M=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right).\)\(\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\left(\frac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{\sqrt{x}^3-1}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)\(.\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\left(\frac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\sqrt{x}}{\sqrt{x}-1}\right).\)\(\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\frac{\sqrt{x}\left(2x+\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\left(2x+\sqrt{x}-1\right)}\)\(-\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(2x+\sqrt{x}-1\right)}\)\(+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)\(+\frac{\sqrt{x}}{2\sqrt{x}+1}\)

\(=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}-\frac{\sqrt{x}}{2\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}+1}\)

Khổ nỗi đến đây tắc, cậu nghĩ ra lối thoát chưa hay tớ sai chỗ nào nhỉ ?

Trần Hồ Tú Loan
Xem chi tiết
THN
Xem chi tiết
my muzzjk
Xem chi tiết
Hoàng Thúy An
15 tháng 7 2020 lúc 6:03

=\(\frac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}}\)

Nguyễn Thái Sơn
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2020 lúc 21:26

a) Ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)

\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3\sqrt{x}}{\sqrt{x}+2}\)

Despacito
Xem chi tiết
Nguyễn Quỳnh Nga
8 tháng 10 2017 lúc 15:17

B=\(\left(\frac{2x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\)\(-\frac{\sqrt{x}}{x+\sqrt{x}+1}\))\(\left(\frac{\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)=\(\left(\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\)\(\left(x-2\sqrt{x}+1\right)\)=\(\sqrt{x}-1\)