Chứng minh rằng:
\(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2=b\left(a-c\right)\left(a+c-b\right)^2\)
Cho a,b,c là các số thực thuộc đoạn [-1,1] .Chứng minh rằng :
\(\left|\left(a-b\right)\left(b-c\right)\right|+\left|\left(b-c\right)\left(c-a\right)\right|+\left|\left(c-a\right)\left(a-b\right)\right|\ge\dfrac{5}{2}\left|\left(a-b\right)\left(b-c\right)\left(c-a\right)\right|\)
Chứng minh rằng \(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2=b\left(a-c\right)\left(a+c-b\right)^2\)
\(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2=\)\(b\left(a-c\right)\left(a+c-b\right)^2\)
\(\Leftrightarrow\)\(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2-b\left(a-c\right)\left(a+c-b\right)^2=0\)
Đặt:
\(\begin{cases}a+b-c=x\\b+c-a=y\\a+c-b=z\end{cases}\)\(\hept{\Leftrightarrow\begin{cases}a=\frac{x+z}{2}\\b=\frac{x+y}{2}\\c=\frac{y+z}{2}\end{cases}}\)
\(\Leftrightarrow\)\(\frac{x+z}{2}\left(\frac{x+y}{2}-\frac{y+z}{2}\right)y^2+\frac{y+z}{2}\left(\frac{x+z}{2}-\frac{x+y}{2}\right)x^2-\frac{x+y}{2}\left(\frac{x+z}{2}-\frac{y+z}{2}\right)z^2=0\)
\(\Leftrightarrow\frac{x+z}{2}\times\frac{x-z}{2}\times y^2+\frac{z+y}{2}\times\frac{z-y}{2}\times x^2-\frac{x+y}{2}\times\frac{x-y}{2}\times z^2=0\)
\(\Leftrightarrow\frac{1}{4}\left(x+z\right)\left(x-z\right)y^2+\frac{1}{4}\left(z+y\right)\left(z-y\right)x^2-\frac{1}{4}\left(x+y\right)\left(x-y\right)z^2=0\)
\(\Leftrightarrow\frac{1}{4}\left[\left(x^2-z^2\right)y^2+\left(z^2-y^2\right)x^2\right]-\frac{1}{4}\left(x^2-y^2\right)z^2=0\)
\(\Leftrightarrow\frac{1}{4}\left(x^2y^2-z^2y^2+x^2z^2-x^2y^2\right)-\frac{1}{4}\left(x^2-y^2\right)z^2=0\)
\(\Leftrightarrow\frac{1}{4}\left(x^2-y^2\right)z^2-\frac{1}{4}\left(x^2-y^2\right)z^2=0\)
Vậy \(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2=\)\(b\left(a-c\right)\left(a+c-b\right)^2\)
Chứng minh rằng với a, b, c là các số đôi một khác nhau thì:
\(\frac{a^2\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{b^2\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}+\frac{c^2\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}=x^2\)
chứng minh rằng:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+4abc=c\left(c+b\right)^2+a\left(b+c\right)^2+b\left(c+a\right)^2\)
vế trái
(a+b)(b+c)(c+a)+4abc
=(ab+ac+b2+bc)(c+a)+4abc
=abc+ac2+b2c+bc2+a2b+a2c+abc+4abc
=(a2c+2abc+b2c)+(ab2+2abc+ac2)+(ba2+2abc+bc2)
=c(a2+2ab+b2)+a(b2+2bc+c2)+b(a2+2ac+c2)
=c(a+b)2+a(b+c)2+b(a+c)2 (đpcm)
đề sai nha làm tớ nghĩ mãi mới thấy đề sai
Chứng minh rằng: \(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2=b\left(a-c\right)\left(a+c-b\right)^2\)
Chứng minh rằng với mọi số thực a,b,c ta có:
\(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2=b\left(a-c\right)\left(a+c-b\right)^2\\ \)
Chứng minh rằng nếu a,b,c khác nhau thì \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
\(VT=\frac{b-a+a-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-b+b-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-c+c-b}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{-1}{a-c}+\frac{1}{a-b}+\frac{-1}{b-a}+\frac{1}{b-c}+\frac{-1}{c-b}+\frac{1}{c-a}\)
\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}=VP\)
Cho a,b,c khác nhau. Chứng minh rằng \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
Ta có:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a+a-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{c-a}+\frac{1}{a-b}\)
Tương tự:
\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{c-b+b-a}{\left(b-c\right)\left(b-a\right)}=\frac{c-b}{\left(b-c\right)\left(b-a\right)}+\frac{b-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{a-b}+\frac{1}{b-c}\)
Và: \(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{a-c+c-b}{\left(c-a\right)\left(c-b\right)}=\frac{a-c}{\left(c-a\right)\left(c-b\right)}+\frac{c-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{b-c}+\frac{1}{c-a}\)
=> \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}\)
=> \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
=> đpcm
Bài 1: Chứng minh rằng
\(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2=b\left(a-c\right)\left(a+c-b\right)^2\)
Đặt a+b-c=x;b+c-a=y;c+a-b=z
=>\(a=\frac{x+z}{2};b=\frac{x+y}{2};c=\frac{y+z}{2}\)
Cần Cm: a(b-c)(b+c-a)2+c(a-b)(a+b-c)2-b(a-c)(a+c-b)2=0
=> \(\frac{x+z}{2}\left(\frac{x+y}{2}-\frac{y+z}{2}\right)^2\cdot y^2+\frac{y+z}{2}\left(\frac{x+z}{2}-\frac{x+y}{2}\right)\cdot x^2-\frac{y+x}{2}\cdot\left(\frac{z+y}{2}-\frac{z+x}{2}\right)^2\cdot z^2=0\)
=>\(\frac{1}{4}\left(x^2-z^2\right)\cdot y^2+\frac{1}{4}\cdot\left(z^2-y^2\right)\cdot x^2-\frac{1}{4}\left(x^2-y^2\right)\cdot z^2=0\)(luôn đúng)
=> đpcm