chứng minh
\(2\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)-3=\dfrac{\left(a-b\right)^2}{\left(a+c\right)\left(b+c\right)}+\dfrac{\left(b-c\right)^2}{\left(b+a\right)\left(c+a\right)}+\dfrac{\left(c-a\right)^2}{\left(c+b\right)\left(a+b\right)}\)
Cho 3 số a, b, c thỏa mãn a # -b, b # -c, c # -a.
Chứng minh rằng : \(\dfrac{a^2-bc}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^2-ac}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^2-ab}{\left(c+a\right)\left(c+b\right)}=0\)
Cho \(\dfrac{a-\left(c-b\right)}{b-c}+\dfrac{b-\left(a-c\right)}{c-a}+\dfrac{c-\left(b-a\right)}{a-b}=3\)
Chứng minh rằng: \(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\)
Chứng minh
\(\dfrac{\left(a-b\right)^2}{ab}+\dfrac{\left(b-c\right)^2}{bc}+\dfrac{\left(c-a\right)^2}{ca}=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Bài 1 : rút gọn các biểu thức sau
A = \(\left(3x+1\right)^2-2\left(3x+1\right)\left(5x+5\right)+\left(5x+5\right)^2\)
B = \(\left(a+b+c\right)^2\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-b-a\right)^2\)
C = \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
Bài 2 : chứng minh các biểu thức sau không phụ thuộc vào biến x và y
A = \(\left(2x-1\right)\left(x^2+x-1\right)-\left(x-5\right)^2-2\left(x+1\right)\left(x^2-x+1\right)-7\left(x-2\right)\)
Cho abc khác 0 ; a+b+c=0 . Hãy rút gọn biểu thức:
\(T=\dfrac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}+\dfrac{b^2}{\left(b-c\right)\left(b+c\right)-a^2}+\dfrac{c^2}{\left(c-a\right)\left(c+a\right)-b^2}\)
Cho các số a, b, c nguyên dương, phân biệt sao cho :
\(\left\{{}\begin{matrix}c\left(a-b\right)^2+b\left(c-a\right)^2+a\left(b-c\right)^2⋮a+b\\a+b\in P\end{matrix}\right.\)(P là tập hợp các số nguyên tố)
Chứng minh rằng : a, b, c không là độ dài 3 cạnh tam giác.
Giải phương trình:
\(\frac{x}{\left(a-b\right)\left(a-c\right)}+\frac{x}{\left(b-a\right)\left(b-c\right)}+\frac{x}{\left(c-a\right)\left(c-b\right)}=2\)
Cho a, b, c > 0 . CMR:
\(\frac{1}{a+b+c}\ge\frac{a^3}{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}+\frac{b^3}{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}+\frac{c^3}{\left(2c^2+a^2\right)\left(2c^2+a^2\right)}\)