Cho 3 số dương a,b,c thõa mãn :
\(\left\{{}\begin{matrix}a< b< c\\a+b+c=6\\ab+bc+ac=9\end{matrix}\right.\)
Chứng minh : a < 1 < b < 3 < c < 4
Cho 3 số a, b, c thỏa mãn a # -b, b # -c, c # -a.
Chứng minh rằng : \(\dfrac{a^2-bc}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^2-ac}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^2-ab}{\left(c+a\right)\left(c+b\right)}=0\)
Cho các số thực a,b,c thỏa mãn điều kiện \(\left\{{}\begin{matrix}a+b+c>0\\ab+bc+ca>0\\abc>0\end{matrix}\right.\). Hãy chứng minh: a,b,c>0
Cho \(\left\{{}\begin{matrix}a^2+b^2+c^2=1\\a+b+c=1\end{matrix}\right.\) Tính \(a+b^2+c^2\)
cho 3 số a, b, c thỏa mãn: \(\left\{{}\begin{matrix}a+b+c=0\\-1\le a,b,c\le2\end{matrix}\right.\)
CMR. a2 + b2 + c2 \(\le6\)
Cho a, b, c là ba số dương thoả mãn abc = 1. Chứng minh rằng: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
Cho \(\dfrac{a-\left(c-b\right)}{b-c}+\dfrac{b-\left(a-c\right)}{c-a}+\dfrac{c-\left(b-a\right)}{a-b}=3\)
Chứng minh rằng: \(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\)
Chứng minh rằng: \(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2=b\left(a-c\right)\left(a+c-b\right)^2\)
chứng minh
\(2\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)-3=\dfrac{\left(a-b\right)^2}{\left(a+c\right)\left(b+c\right)}+\dfrac{\left(b-c\right)^2}{\left(b+a\right)\left(c+a\right)}+\dfrac{\left(c-a\right)^2}{\left(c+b\right)\left(a+b\right)}\)