x:y:z=3:5:(-2) và 5x-y+3z=124. Tìm x; y ; z
x:y:z+3:5:(-2) và 5x-y+3z=124
tìm x,y,z
tìm x;y;z
\(x:y:z=\frac{3}{5}:-2\)và \(5x-y+3z=124\)
Theo đề ta có:
\(x:y:z=\frac{3}{5}:\left(-2\right)\Rightarrow x:y:z=3:5:\left(-2\right)\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)và \(5x-y+3z=124\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{5.3-5+3.\left(-2\right)}=\frac{124}{4}=31\)
\(\hept{\begin{cases}\frac{x}{3}=31\Rightarrow x=31.3=93\\\frac{y}{5}=31\Rightarrow y=31.5=155\\\frac{z}{-2}=31\Rightarrow z=31.\left(-2\right)=-62\end{cases}}\)
Vậy \(x=93;y=155;z=-62\)
Tìm x,y,z biết:
1. x:y:z=3:8:5 và 3x+y-2z=14
2. \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và 4x-3y-2z=36
3. x:y:z=3:5:(-2) và 5x-y+3z=124
1, \(x\div y\div z=3\div8\div5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)
\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)
\(\Rightarrow\frac{3x+y-2z}{9+8-10}=\frac{x}{3}=\frac{y}{8}=\frac{z}{10}=\frac{14}{7}=2\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot3=6\\y=2\cdot8=16\\z=2\cdot5=10\end{cases}}\)
vậy_
các phần sau tương tự
1, \(x:y:z=3:8:5;3x+y-2z=14\)
\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)
\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{3x}{9}=2\Rightarrow3x=18\Rightarrow x=6\\\frac{y}{8}=2\Rightarrow y=16\\\frac{2z}{10}=2\Rightarrow2z=20\Rightarrow z=10\end{cases}}\)
Vậy....
2, \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3};4x-3y-2z=36\)
\(\Rightarrow\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x-3y-2z}{4-6-6}=\frac{36}{-8}=\frac{-36}{8}=\frac{-9}{4}\)
Làm tương tự để tìm x;y;z
3, \(x:y:z=3:5:\left(-2\right);5x-y+3z=124\)
\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{\left(-2\right)}\)
\(\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)
\(\Rightarrow\hept{\begin{cases}\frac{5x}{15}=31\Rightarrow5x=465\Rightarrow x=93\\\frac{y}{5}=31\Rightarrow y=155\\\frac{3z}{-6}=31\Rightarrow3z=-186\Rightarrow z=-62\end{cases}}\)
Vậy .....
Tìm x;y;z, biết:
a. x:y:z = 3:5:(- 2) và 5x - y + 3z = 124
b. 2x=3y ; 5y=7z và 3x - 7y + 5z = 30
a) Từ x:y:z = 3:5:(-2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)
=> \(\begin{cases}x=93\\y=155\\z=-62\end{cases}\)
b) Từ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)
=> \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3z-7y+5z}{63-98+50}=\frac{30}{15}=2\)
=> \(\begin{cases}x=42\\y=28\\z=20\end{cases}\)
a) Giải:
Ta có: \(x:y:z=3:5:\left(-2\right)\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x}{15}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)
+) \(\frac{x}{3}=31\Rightarrow x=93\)
+) \(\frac{y}{5}=31\Rightarrow y=155\)
+) \(\frac{z}{-2}=31\Rightarrow z=-62\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(93;155;-62\right)\)
b) Giải:
Ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
+) \(\frac{x}{21}=2\Rightarrow x=42\)
+) \(\frac{y}{14}=2\Rightarrow y=28\)
+) \(\frac{z}{10}=2\Rightarrow z=20\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(42;28;20\right)\)
a)
x:y:z=3:5:(-2)
=>\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{5.3-5+3\left(-2\right)}=\frac{124}{4}=31\)
=>x=31.3=39
y=31.5=155
z=31.(-2)=-62
b)
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)
=>\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x-7y+5z}{21.3-7.14+5.10}=\frac{30}{15}=2\)
=> x=2.21=42
y=2.14=28
z=2.10=20
Tìm x,y,z:
a,x:y:z=3:5:(-2) và 5x-y+3z=124
b,x/3=y/4=z/5 và 2x2+2y2-3z2= -100
c,x-1/2=y-2/3=z-3/4 và 2x+ 3y -z=50
đừng nên dựa vào trang này quá
bài trên thuộc dạng SGK , SBT mà không làm được à
a, Theo đề bài ta có :\(\frac{x}{3}\)=\(\frac{y}{5}\)=\(\frac{z}{\left(-2\right)}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{x}{3}\)=\(\frac{y}{5}\)=\(\frac{z}{\left(-2\right)}\)=\(\frac{5x}{15}\)=\(\frac{3z}{\left(-6\right)}\)=\(\frac{5x-y+3z}{15-5+\left(-6\right)}\)=\(\frac{124}{4}\)= 31 (Vì \(5x-y+3z=124\))
Suy ra : \(x=31\times3=93\)
\(y=31\times5=155\)
\(z=31\times\left(-2\right)=-62\)
Vậy .................
x:y:z=3:5:-2 va 5x-y+3z=124.Tim x,y,z
<=> x/3 = y/5 = z/(-2)
= 5x/15 = y/5 = 3z/(-6)
= (5x-y+3z)/ [15-5+(-6)] (theo t/c của dãy tỷ số bằng nhau)
=124/4
= 31
Vậy: x = 31 . 3 = 93
y = 31 . 5 = 155
z = 31 . (-2) = - 62
Ta co : x:y:z=3:5:-2
hay x/3=y/5=z/-2
ma 5x-y+3z=124
Theo t/c cua day ti so bang nhau , ta co
x/3=y/5=z/-2=5x/15-y/5+3z/-6=124/4
=31
\(\Rightarrow\)x/3=31\(\Rightarrow\)x=93\(\Rightarrow\)
\(\Rightarrow\)z/-2=31\(\Rightarrow\)z=-62
\(\Rightarrow\)y/5=31 \(\Rightarrow\) y=155
<=> x/3 = y/5 = z/(-2)
= 5x/15 = y/5 = 3z/(-6)
= (5x-y+3z)/ [15-5+(-6)] (theo t/c của dãy tỷ số bằng nhau)
=124/4
= 31
Vậy: x = 31 . 3 = 93
y = 31 . 5 = 155
z = 31 . (-2) = - 62
Tim z ,y,x
b,x=y/2 va 4x-3y+2z=36
c,x:y:z=3:5:(-2) và 5x-y+3z=124
Tìm các số x,y,z thỏa mãn x:y:z=3:5:(-2) và 5x - y+3z =-16
Ta có: x:y:z=3:5:(-2)= \(\dfrac{5x}{15}\):\(\dfrac{y}{5}:\dfrac{3z}{-6}\)
\(\dfrac{5x-y+3z}{15-5+\left(-6\right)}=-\dfrac{16}{4}=-4\)
\(\dfrac{x}{3}=-4\Rightarrow x=-12\)
\(\dfrac{y}{5}=-4\Rightarrow y=-20\)
\(\dfrac{z}{-2}=-4\Rightarrow z=8\)
x:y:z=3:5:(-2)⇒\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}\)
Áp dụng tính chất đãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}=\dfrac{5x}{15}=\dfrac{y}{5}=\dfrac{3z}{-6}=\dfrac{5x-y+3z}{15-5-6}=-\dfrac{16}{4}=-4\)
\(\dfrac{x}{3}=-4\Rightarrow x=-12\)
\(\dfrac{y}{5}=-4\Rightarrow y=-20\)
\(\dfrac{z}{-2}=-4\Rightarrow z=8\)
Tìm x, y, z biết
a, x/1 = y/2 = z/3 và 4x-3y+2z = 36
b, x:y:z = 3:5(-2) và 5x - y +3z = 124
Theo đề, ta có:
\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\) và 4x - 3y + 2z = 36
\(\Rightarrow\dfrac{4x}{4}=\dfrac{3y}{6}=\dfrac{2z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta lại có:
\(\dfrac{4x}{4}=\dfrac{3y}{6}=\dfrac{2z}{6}=\dfrac{4x-3y+2z}{4-6+6}=\dfrac{36}{4}=9\)
Suy ra:
\(\dfrac{x}{1}=9\Rightarrow x=9\)
\(\dfrac{y}{2}=9\Rightarrow y=18\)
\(\dfrac{z}{3}=9\Rightarrow z=27\)
Vậy x, y, z lần lượt là: 9; 18; 27