Cho tam giác ABC biết AB:AC:BC=4:5:6 và chu vi tam giác=30cm.
a,So sánh độ lớn các góc của tam giác ABC.
b,Gọi M là trung điểm của BC so sánh góc MAB và góc MAC.
Cho tam giác ABC biết AB:AC:BC=4:5:6 và chu vi tam giác bằng 30cm
a, so sánh độ lớn các góc của tam giác
b, gọi M là trung điểm của BC, so sánh hai góc MAB và MAC
Cho tam giác ABC có AB : AC : BC = 4: 5: 6 và chu vi tam giac bằng 30 cm
a)So sánh các góc của tam giác.
b)Gọi M là trung điểm của BC, so sánh các góc MAB và MAC.
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AB}{4}=\dfrac{AC}{5}=\dfrac{BC}{6}=\dfrac{AB+AC+BC}{4+5+6}=\dfrac{30}{15}=2\)
Do đó: AB=8cm; AC=10cm; BC=12cm
=>\(\widehat{C}< \widehat{B}< \widehat{A}\)
b: \(\cos MAB=\dfrac{AB^2+AM^2-BM^2}{2\cdot AB\cdot AM}=\dfrac{AB^2+AM^2-CM^2}{2\cdot AB\cdot AM}\)
\(\cos MAC=\dfrac{AM^2+AC^2-MC^2}{2\cdot AM\cdot AC}\)
mà \(\dfrac{AB^2+AM^2-MC^2}{2\cdot AM\cdot AC}< \dfrac{AM^2+AC^2-MC^2}{2\cdot AM\cdot AC}\)
nên \(\widehat{MAB}>\widehat{MAC}\)
cho tam giác ABC . biết AC: AC:BC=4:5:6 và chu vi tam giác bằng 30 cm
a) SS đọ lớn các góc của tam giác
b) gọi M là trung điểm của cạnh BC . SS góc MAB và góc MAC
cho tam giác abc biết ab:ac:bc=4:5:6 và chu vi tam giác bằng 30cm a)so sánh đọ lớn của các góc của tam giác
giải giúp mik vs mik cần gấp
#\(N\)
`a,` Gọi các cạnh của tam giác lần lượt là `x,y,z (x,y,z \ne 0)`
Các cạnh `AB, AC, BC` của tam giác có tỉ lệ `4:5:6`
Nghĩa là: `x/4 = y/5 = z/6`
Chu vi của tam giác là `30 cm`
`-> x+y+z=30`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/4 = y/5 = z/6 =`\(\dfrac{x+y+z}{4+5+6}=\dfrac{30}{15}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{4}=2\\\dfrac{y}{5}=2\\\dfrac{z}{6}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\cdot4=8\\y=2\cdot5=10\\z=2\cdot6=12\end{matrix}\right.\)
Vậy, các cạnh `AB, AC, BC` của tam giác lần lượt có độ dài là `8, 10, 12`
`-> BC > AC > AB`
`*`Theo định lí `1` của tam giác `->` \(\widehat{A}>\widehat{B}>\widehat{C}\)
Vì ta biết tỉ lệ độ dài các cạnh của tam giác ABC, ta có thể giải quyết bài toán bằng cách sử dụng định lý Cosin và định lý Sin để tính toán độ lớn các góc trong tam giác.
Đặt ab = 4x, ac = 5x, bc = 6x là độ dài các cạnh của tam giác. Từ đó, ta có:
Chu vi tam giác ABC = ab + ac + bc = 4x + 5x + 6x = 15x Do đó, ta có: 15x = 30cm → x = 2cm
Sau đó, ta tính được độ dài của các cạnh của tam giác: ab = 8cm, ac = 10cm và bc = 12cm.
Theo định lý Cosin, ta có: cos(A) = (b^2 + c^2 - a^2) / 2bc cos(B) = (a^2 + c^2 - b^2) / 2ac cos(C) = (a^2 + b^2 - c^2) / 2ab
Áp dụng công thức này, ta tính được các giá trị cos của các góc trong tam giác: cos(A) = 3/4 cos(B) = 1/2 cos(C) = 1/4
Ta thấy rằng góc A có cosin lớn nhất nên góc A là góc lớn nhất trong tam giác.
Theo định lý Sin, ta có: a/sin(A) = b/sin(B) = c/sin(C) = 2R, với R là bán kính đường tròn ngoại tiếp tam giác
Từ đó, ta tính được bán kính đường tròn ngoại tiếp tam giác là R = abc / 4S = 5cm, với S là diện tích tam giác.
Sử dụng công thức này, ta tính được các giá trị sin của các góc trong tam giác: sin(A) = 4/5 sin(B) = 3/5 sin(C) = 1/5
Từ đó, ta có thể so sánh độ lớn của các góc của tam giác ABC: sin(A) > sin(B) > sin(C) và cos(A) > cos(B) > cos(C)
Vậy, góc A là góc lớn nhất trong tam giác, tiếp theo đến góc B và cuối cùng là góc C.
Bài 1: Cho tam giác ABC cân tại A, chu vi bằng 20cm, cạnh đáy bằng 8cm. Hãy so sánh các góc của tam giác
Bài 2: Cho tam giác ABC, biết độ dài các cạnh tam giác có tỉ lệ AB:AC:BC = 3:4:5. Hãy so sánh các góc của tam giác
Bài 3: Cho tam giác ABC, góc A là góc tù. Trên cạnh AC lấy điểm D, E sao cho D nằm giữa A và E. Chứng minh rằng BA < BD < BE < BC
Bài 4: Cho tam giác ABC vuông tại B, CD là tia phân giác của góc C. Từ D kẻ đường thẳng vuông góc với AC tại E. Chứng minh rằng DE = DB < DA
Bài 5: Cho tam giác ABC có AB < AC. Gọi M là trung điểm BC. Trên tia đối của MA lấy điểm D sao cho MD = MA. Hãy so sánh góc CDA và góc CAD
Bài 6: Cho tam giác ABC có AB > AC, BN là phân giác của góc ABC, CM là phân giác của ACB, I là giao điểm của BN, CM. Hãy so sánh IC và IB, AM và BM
Bài 7: Cho tam giác ABC, có AB < AC. M là trung điểm của BC, AD là phân giác góc BAC. Chứng minh rằng:
a) Góc AMB < góc AMC
b) Góc MAB > góc CAM
c) Góc ADB < góc ADC
d) CD < DB
Bài 8: Cho tam giác ABC vuông tại A. M là trung điểm của AC. Trên tia đối của MB lấy điểm E sao cho ME = MB. Chứng minh rằng:
a) BC > CE; CE ⊥ AC
b) Góc ABM > góc MBC
cho tam giác ABC, AB<AC, M là trung điểm của BC. so sánh góc MAB và góc MAC
Cho tam giác ABC,M là trung điểm của BC và biết góc AMB < MAC. So sánh góc ABC và góc ACB
1. Cho tam giác ABC có AB < AC . Gọi M là trung điểm BC . So sánh góc BAM và góc MAC
2. Cho tam giác ABC có AB<AC.Tia phân giác của góc A cắt BD ở D.So sánh độ dài BD,DC
cho tam giác ABC có ab=ac gọi m,n là trung điểm của ab và ac tương ứng
a) chứng minh tam giác MAC = tam giác NAB
b) so sánh góc ABN và góc ACM so sánh góc BMC và CNB
c) gọi E = BN giao CM . chứng minh tam giác BEM = tam giác NAE
d)chứng minh tam giác MAE = tam giác NAE
e) chứng minh AE là tia phân giác góc BAC
làm giúp em câu c , d , e hoi ạ:3
thanks mn nhìu:3333
a: Xét ΔMAC và ΔNAB có
MA=NA
\(\widehat{MAC}\) chung
AC=AB
Do đó: ΔMAC=ΔNAB