cho tam giác abc có góc b =60o; ab=7cm; bc=15cm;vẽ ah vuông góc với bc(h thuộc bc). Lấy điểm m trên hc sao hm=hb
a)so sánh góc bac và góc acb
b)cm tam giác abm là tam giác đều
tam giác abc có phải là tam giác vuông không? vì sao
Câu 3 : Cho tam giác ABC vuông tại A, kẻ tia phân giác của góc BC cắt AC tại I. Kẻ IM vuông góc với BC tại M, gọi N là giao điểm của BA và MI .
a) Chứng minh tam giác ABI=MBI
b) So sánh AI và IC.
c) Gọi K là trung điểm của FC. Chứng minh ba điểm B; I; K thẳng hàng.
Cho tam giác ABC vuông tại A có AB = 9 cm ; BC = 15 cm
a, Tính AC và so sánh các góc của tam giác ABC
b, Lấy D thuộc tia đối của AB sao cho A là trung điểm của BD. Chứng minh tam giác BCD cân
c, Lấy E là trung điểm BC và BK cắt AC tại M. Tính MC
Cho tam giác ABC cân tại A. Gọi M, N là trung điểm các cạnh AB, AC. Các đường thẳng vuông góc với AB, AC tại M; N cắt nhau tại điểm O, AO cắt BC tại H. Chứng minh:
a) AMO =ANO
b) AH là phân giác của góc A
c) HB = HC và AH⊥ BC
d) So sánh OC và HB
Cho tam giác ABC và biết góc A + C = 120 độ, góc A - C = 40 độ
a) So sánh các cạnh của tam giác ABC.
b) Tia phân giác của góc A cắt BC ở D. So sánh độ dài các đoạn BD và CD.
Bài toán 1: Cho tam giác ABC, biết
a) So sánh các cạnh của tam giác
b) Tia phân giác của góc A cắt BC ở D. So sánh độ dài các đoạn BD và CD.
Bài toán 2: Cho tam giác ABC cân ở A có chu vi bằng 16cm, cạnh đáy BC = 4cm. So sánh các góc của tam giác ABC.
Bài toán 3: Cho tam giác ABC, biết So sánh các cạnh của tam giác.
Bài toán 4: Cho tam giác ABC, góc A là góc tù. Trên cạnh AC lấy hai điểm D và E (D nằm giữa A và E). Chứng minh rằng
Bài toán 5: Cho tam giác ABC CÓ
a) So sánh độ dài các cạnh AB và AC
b) Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho Chứng minh .
Bài toán 6: Tam giác ABC có Tia phân giác của góc A cắt BC ở D. Chứng minh rằng điểm D nằm giữa hai điểm B và m (M là trung điểm của BC).
Bài toán 7: Tam giác ABC cân tại A. Kẻ tia Bx nằm giữa hai tia BA và BC. Trên tia Bx lấy điểm D nằm ngoài tam giác ABC. Chứng minh rằng
Bài toán 8: Cho tam giác ABC cân ở A, kẻ Trên các đoạn thẳng HD và HC, lấy các điểm D và E sao cho So sánh độ dài AD, AE bằng cách xét hai hình chiếu.
Bài toán 9: Cho tam giác ABC có và là các góc nhọn. Gọi D là điểm bất kfi thuộc cnahj BC, gọi H và K là chân các đường vuông góc kẻ từ B và C đến đường thẳng AD.
a) So sánh các độ dài BH và BD. Có khi nào BH bằng BD không?
b) So sánh tổng độ dài BH + CK với BC.
Bài toán 10: Cho tam giác ABC cân ở A. Trên cạnh BC lấy điểm D và E sao cho Gọi M là trung điểm của DE.
a) Chứng minh rằng
b) So sánh độ dài AB, AD, AE, AC.
Bài toán 11: Cho tam giác ABC Gọi M là một điểm nằm giữa B và C. Gọi E và F là hình chiếu của B và C xuống đường thẳng AM. So sánh tổng với BC
Cho tam giác ABC vuông tại A, tia phân giác của góc B cắt AC tại M. Trên cạnh BC lấy điểm D sao cho BD=BA
a) CM: tam giác ABM = tam giác DBM suy ra góc MDB vuông
b) So sánh AC và BC. CM: MC>MA
cho tam giác ABC vuông tại A, tia phân giác của góc B cắt AC tạiI, kẻ IE vuông góc BC tại E.
a, chứng minh tam giác ABI= tam giác EBI từ đó so sánh AI và IC.
b, gọi F là giao điểm của BA và EI. chứng minh BI vuông góc IC
Bài 6. Cho tam giác ABC vuông tại A a) Nếu AB = 9cm; BC = 15 cm. Tính AC và so sánh các góc của tam giác ABC. b) Trên tia đối của tia CA lấy điểm D sao cho CA = CD , Qua D kẻ đường thẳng d vuông góc với AD. Gọi E là giao của BC và d. Qua C kẻ đường thẳng vuông góc với BE cắt đường thẳng d tại F. Chứng minh tam giác ABC- tam giác DEC và tam giác BEF cân. c) So sánh BF và AD d) Tìm điều kiện của tam giác ABC để tam giác EFB đều