cho \(\sqrt{x^2-6x+19}\)-\(\sqrt{x^2-6x+10}\)=3 . tính giá trị của T=\(\sqrt{x^2-6x+19}+\sqrt{x^2-6x+10}\)
cho biểu thức A=\(\sqrt{x^2-6x+19}-\sqrt{x^2-6x+19}=3\)
hãy tính giá trị của biểu thức A=\(\sqrt{x^2-6x+19}+\sqrt{x^2-6x+10}\)
cho biểu thức A=\(\sqrt{x^2-6x+19}-\sqrt{x^2-6x+10}=3\)
hãy tính giá trị của biểu thức
A=\(\sqrt{x^2-6x+19}+\sqrt{x^2-6x+10}\)
Đặt \(a=\sqrt{x^2-6x+19},a\ge0\) ; \(b=\sqrt{x^2-6x+10},b\ge0\)
\(\Rightarrow\begin{cases}a-b=3\\a^2-b^2=9\end{cases}\) \(\Rightarrow A=a+b=3\)
cho biểu thức A= \(\sqrt{x^2-6x+19}-\sqrt{x^2-6x+10}=3\)
hãy tính giá trị của biểu thức
A=\(\sqrt{x^2-6x+19}+\sqrt{x^2-6x+10}\)
VẬN DỤNG BÀI BIẾN ĐỔI ĐƠN GIẢN BIỂU THỨC CHỨA CĂN BẬC HAI
Các biểu thức dưới dấu căn đều dương
Đat \(\sqrt{x^2-6x+19}=a\ge0,\sqrt{x^2-6x+10}=b\ge0\)
Ta có \(a-b=3\)và \(a^2-b^2=9\)
\(\Rightarrow a+b=9\)
Do \(a+b>a-b\) nên \(b>0\)\(\Leftrightarrow a>0\)
Vậy giá trị của biểu thức A = 9
Cho \(\sqrt{x^2-6x+19}-\sqrt{x^2-6x+10}=3\)
Tính M = \(\sqrt{x^2-6x+19}+\sqrt{x^2-6x+10}\)
Cho biết : \(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\)=1
Tính : \(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\)=?
Cho \(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}=1\) Tính: \(A=\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\)
Ta có: \(A\cdot1=\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)=x^2-6x+13-x^2+6x-10=3\)
=> A = 3
\(Cho\sqrt{x^{ }2-6x+13}-\sqrt{x^{ }2-6x+10}=0\)
Tính \(\sqrt{x^{ }2-6x+13}+\sqrt{x^{ }2-6x+10}\)
cho \(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}=1\)
hãy tính \(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\)
(\(\sqrt{x^2-6x+13}\) - \(\sqrt{x^2-6x+10}\))(\(\sqrt{x^2-6x+13}\) + \(\sqrt{x^2-6x+10}\)) = x2 - 6x + 13 - x2 + 6x - 10 = 3
=>
\(\sqrt{x^2-6x+13}\) + \(\sqrt{x^2-6x+10}\) = 3
Tìm x
\(\sqrt{x^2-6x+10}+\sqrt{x^2-6x+8}+\sqrt{x^2-6x+12}=4+\sqrt{3}\)