Xác định đa thức f(x) biết : \(f\left(x-1\right)=x^2-3x+2\)
Xác định đa thức f(x) có bậc ba thỏa mãn: \(f\left(x+1\right)-f\left(x\right)=x^2\left(\forall x\right)\) và \(f\left(2\right)=2020\)
1. Xác định các đa thức sau:
a) Nhị thức bậc nhất f(x) = ax + b với a≠0, biết f(-1) = 1 và f(1) = -1
b) Tam thức bậc hai \(g\left(x\right)=ax^2+bx+c\) với a≠0, biết g(-2) = 9, g(-1) = 2, g(1)=6
2.a) Đa thức f(x) = ax + b (a≠0). Biết f(0) = 0. Chứng minh f(x) = -f(-x) với mọi x
b) Đa thức f(x) = ax2 + bx + c (a≠0). Biết f(1) = f(-1). Chứng minh f(x) = f(-x) với mọi x.
3. Tìm tổng các hệ số của đa thức sau khi phá ngoặc và sắp xếp, biết:
a) Đa thức \(f\left(x\right)=\left(2x^3-3x^2+2x+1\right)^{10}\)
b) Đa thức \(g\left(x\right)=\left(3x^2-11x+9\right)^{2011}.\left(5x^4+4x^3+3x^2-12x-1\right)^{2012}\)
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
Tớ nêu hướng giải bài 3 thôi nhé:
Bài toán: Cho đa thức \(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\)
Chứng minh tổng các hệ số của đa thức f(x) là giá trị của đa thức khi x = 1
Lời giải:
Thật vậy,thay x = 1 vào:
\(f\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\) (đúng bằng tổng các hệ số của đa thức)
Vậy tổng các hệ số của 1 đa thức chính là giá trị của đa thức đó khi x = 1 (đpcm)
cho đa thức \(f\left(x\right)=ax^2+bx+c\)
a) xác định hệ số a,b,c biết \(f\left(0\right)=1;f\left(1\right)=0;f\left(-1\right)=10\)
b) tìm nghiệm của đa thức vừa xác định
Ta có: f(0)=1
<=> ax2 +bx+c=1
<=> c=1
f(1)=0
<=>ax2 +bx+c=0
<=> a+b+c=0
mà c=1
=>a+b=-1(1)
f(-1)=10
<=> ax2 +bx +c=10
<=>a-b+c=10
mà c=1
=>a-b=9(2)
Lấy (1) trừ (2) ta được (a+b)-(a-b)=-1-9
<=> 2b=-10
<=> b=-5
=>a=4
Vậy a=4,b=-5,c=1
xác định đa thức f(x) biết rằng: f(x-1)=x^2+3x+2
Xác định đa thức \(f\left(x\right)=ax^2+bx+c\) biết rằng f(x) chia x và x+4 đều có số dư là 5 và f(-2)=-3
\(f\left(x\right)=ax^2+bx+c\)
=> \(f\left(-2\right)=4a-2b+c=-3\)
Có f(x) chia cho x và x + 4 đều dư 5
=> \(\left\{{}\begin{matrix}f\left(0\right)=0+c=5\\f\left(-4\right)=16a-4b+c=5\end{matrix}\right.\)
Ta có hpt:
\(\left\{{}\begin{matrix}4a-2b+c=-3\\c=5\\16a-4b+c=5\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}c=5\\2\left(2a-b\right)=-8\\4\left(4a-b\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=5\\b=4a\\2a-b=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=8\\c=5\end{matrix}\right.\)
Khi đó \(f\left(x\right)=2x^2+8x+5\)
Câu 1: Xác định đường thẳng đi qua 2 điểm A( 1, 3 ) và B( 3, -1 )
Câu 2: Xác định a, b qua đa thức:
\(f\left(x\right)=x^3-ax^2+bx-a\)
biết \(f\left(x\right)⋮\left(x-1\right)\)và \(f\left(x\right)⋮\left(x-3\right)\)
Câu 2 : \(f\left(x\right)=x^3-ax^2+bx-a\)
Áp dụng định lý Bezout ta có:
\(f\left(x\right)⋮\left(x-1\right)\)\(\Rightarrow f\left(1\right)=0\)
\(\Rightarrow1^3-a.1^2+b.1-a=1-a+b-a=0\)
\(\Leftrightarrow1-2a+b=0\)\(\Leftrightarrow2a-b=1\)(1)
\(\Rightarrow3\left(2a-b\right)=3\)\(\Rightarrow6a-3b=3\)(2)
\(f\left(x\right)⋮\left(x-3\right)\)\(\Rightarrow f\left(3\right)=0\)
\(\Rightarrow3^3-a.3^2+3b-a=27-9a+3b-a=0\)
\(\Leftrightarrow27-10a+3b=0\)\(\Leftrightarrow10a-3b=27\)(3)
Từ (2) và (3)
\(\Rightarrow\left(10a-3b\right)-\left(6a-3b\right)=27-3\)
\(\Leftrightarrow10a-3b-6a+3b=24\)
\(\Leftrightarrow4a=24\)\(\Leftrightarrow a=6\)
Thay \(a=6\)vào (1) ta có:
\(2.6-b=1\)\(\Leftrightarrow12-b=1\)\(\Leftrightarrow b=11\)
Vậy \(a=6\)và \(b=11\)
Xác định đa thức f(x) = x2 + ax + b biết \(\left|f\left(x\right)\right|\le\frac{1}{2}\)với mọi x thỏa mãn \(-1\le x\le1\)
f(-1)=1-a+b; f(0)=b; f(1)=1+a+b
theo giả thiết có: \(\hept{\begin{cases}\frac{-1}{2}\le b\le\frac{1}{2}\left(1\right)\\\frac{-1}{2}\le1-a+b\le\frac{1}{2}\Leftrightarrow\frac{-3}{2}\le-a+b\le\frac{-1}{2}\left(2\right)\\\frac{-1}{2}\le1+a+b\le\frac{1}{2}\Leftrightarrow\frac{-3}{2}\le a+b\le\frac{-1}{2}\left(3\right)\end{cases}}\)
cộng theo từng vế của (2) và (3) có: \(\frac{-3}{2}\le b\le\frac{-1}{2}\left(4\right)\)
từ (1) và (4) ta có: \(b=\frac{-1}{2}\), thay vào (2) và (3) ta được a=0
vậy đa thức cần tìm là \(f\left(x\right)=x^2-\frac{1}{2}\)
+)\(\left|f\left(x\right)\right|\le\frac{1}{2}\Leftrightarrow-\frac{1}{2}\le f\left(x\right)\le\frac{1}{2}\)
+)\(x^2+ax+b=x^2+2\cdot\frac{a}{2}\cdot x+b+\frac{a^2}{4}-\frac{a^2}{4}+b=\left(x+\frac{a}{2}\right)^2+b-\frac{a^2}{4}\)
\(\ge b-\frac{a^2}{4}=-\frac{1}{2}\)
+)\(f\left(x\right)\)có đồ thị quay lên nên đạt giá trị lớn nhất khi x=1 hoặc x=-1
+) Khi x=1 thì \(a+b+1=\frac{1}{2}\Leftrightarrow a+b=-\frac{1}{2}\)
+) Khi x=-1 thì \(b-a+1=\frac{1}{2}\Leftrightarrow b-a=-\frac{1}{2}\)
+) TH1: \(\hept{\begin{cases}a+b=-\frac{1}{2}\\b-\frac{a^2}{4}=-\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-\frac{1}{2}\end{cases}}}\)
+) TH2: \(\hept{\begin{cases}b-a=-\frac{1}{2}\\b-\frac{a^2}{4}=-\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-\frac{1}{2}\end{cases}}}\)
Vậy a=0, b=1/2
P/s: Bài này mình không chắc chắn lắm nhé!
bài 1:
cho 2 đa thức \(f\left(x\right)=x-1\cdot x+3\)và\(g\left(x\right)=x^3-ax^2+bx-3\)
xác định hệ số a,b của đa thức \(g\left(x\right)\),biết nghiệm của đa thức \(f\left(x\right)\)cũng là nghiệm của đa thức\(g\left(x\right)\)
Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:
G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)
Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)
\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)
\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)
Đồng nhất hệ số ta được:
\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)
Vậy a = -3 , b = -1
đồng nhất hệ số mình chưa học nha
Đồ thị của hàm số \(y = f\left( x \right) = - {x^2} + x + 3\)được biểu diễn trong hình 1
a) Biểu thức \(f\left( x \right)\) là đa thức bậc mấy?
b) Xác định dấu của \(f\left( 2 \right)\)
a) Số mũ cao nhất của hàm số là 2, suy ra biểu thức\(f\left( x \right)\)đã cho là đa thức bậc hai
b) Thay \(x = 2\) vào \(f\left( x \right)\) ta có:
\(f\left( 2 \right) = - {2^2} + 2 + 3 = 1 > 0\)
Suy ra \(f\left( 2 \right)\) dương.