Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Phân Tuấn Phát
Xem chi tiết
Akai Haruma
13 tháng 7 2020 lúc 11:57

Lời giải:

Biểu thức $P$ chỉ có min chứ không có max bạn nhé.

Nếu tìm min thì ta làm như sau:

Áp dụng BĐT Cô-si cho các số không âm ta có:

$x^2+(\frac{3}{14})^2\geq 2\sqrt{x^2.(\frac{3}{14})^2}=\frac{3}{7}|x|\geq \frac{3}{7}x$

$y^2+(\frac{1}{14})^2\geq \frac{1}{7}|y|\geq \frac{1}{7}y$

$z^2+(\frac{1}{7})^2\geq \frac{2}{7}|z|\geq \frac{2}{7}z$

Cộng theo vế và thu gọn ta thu được:

$P+\frac{1}{14}\geq \frac{1}{7}(3x+y+2z)=\frac{1}{7}$

$\Rightarrow P\geq \frac{1}{14}$

Vậy $P_{\min}=\frac{1}{14}$

Dấu "=" xảy ra khi $(x,y,z)=(\frac{3}{14}, \frac{1}{14}, \frac{1}{7})$

Tại sao lại ra những con số như trên, bạn tham khảo thêm phương pháp chọn điểm rơi trong BĐT AM-GM.

Diệp Nguyễn Thị Huyền
Xem chi tiết
dia fic
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Phạm Thu Ngân
Xem chi tiết
Nguyễn Thu Huyền
Xem chi tiết
Postgass D Ace
Xem chi tiết
Nguyễn An
28 tháng 7 2021 lúc 20:52

⇔3x2+2y2+2z2+2yz=2⇔3x2+2y2+2z2+2yz=2

⇒2≥3x2+2y2+2z2+y2+z2⇒2≥3x2+2y2+2z2+y2+z2 

⇔2≥3(x2+y2+z2)⇔2≥3(x2+y2+z2)

Có: (x+y+z)2≤3(x2+y2+z2)≤2(x+y+z)2≤3(x2+y2+z2)≤2

⇒⇒A2≤2A2≤2 ⇔A∈[−√2;√2]⇔A∈[−2;2]

minA=-1⇔⇔{x+y+z=−√2x=y=z{x+y+z=−2x=y=z  ⇒x=y=z=√23

Nguyễn An
Xem chi tiết
Postgass D Ace
Xem chi tiết
Nguyễn Trung Thành
27 tháng 12 2019 lúc 21:21

mk chỉ tìm đc Max thôi bn ak

áp dụng BĐT Bu-nhi-a-cốpxki:

pt trình đã cho (=)  6(x2+y2+z2)=(1+1+22).(x2+y2+z2)=18 >= (x+y+2z)2

=) x+y+2z<= 3 căn(2)

=) Max ...

Khách vãng lai đã xóa
tth_new
28 tháng 12 2019 lúc 6:58

Nguyễn Trung Thành từ:

\(18=6\left(x^2+y^2+z^2\right)\ge\left(x+y+2z\right)^2\)

\(\Rightarrow3\sqrt{2}\ge x+y+2z\ge-3\sqrt{2}\) luôn nha! Vì nó không có đk x, y, z > 0.

Suy ra min và max

Khách vãng lai đã xóa