Bài 1 Tìm x
\(\frac{1}{5.8}\)+\(\frac{1}{8.11}\)+\(\frac{1}{11.14}\)+...+\(\frac{1}{x.(x+3)}\)=\(\frac{101}{1504}\)
Tìm x , biết : \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x.(x+3)}=\frac{101}{1504} \)
Câu hỏi của Nguyễn Ánh Ngân - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo
\(\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{x\cdot\left(x+3\right)}=\frac{101}{1504}\)
\(\Rightarrow\frac{1}{3}\cdot\left(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+...+\frac{3}{x\cdot\left(x+3\right)}\right)=\frac{101}{1504}\)
\(\Rightarrow\frac{1}{3}\cdot\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1504}\)
\(\Rightarrow\frac{1}{3}\cdot\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1504}\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1504}:\frac{1}{3}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1504}\cdot\frac{3}{1}=\frac{303}{1504}\)
- Đến đây tự tính nhé :v
#Amano Ichigo:
- Bn ơi kq của biểu thức tìm x phải bằng \(\frac{101}{1540}\) mới đúng nhé =)
Học tốt !! :v
Tìm x:\(\frac{1}{5.8}\)+\(\frac{1}{8.11}\)+\(\frac{1}{11.14}\)+...+\(\frac{1}{x\left(x+3\right)}\)=\(\frac{101}{1504}\)
Tìm x:\(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1504}\)
Vớ vẩn đề đúng hẳn hoi , để tui làm cho coi nè.
Xét :\(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x\left(x+3\right)}=\frac{1}{3}\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x\left(x+3\right)}\right)\)
\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+..+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)\)
Khi đó ,phương trình cần giải có dạng \(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1504}\)
Giờ thì việc tìm x quá đơn giản đúng không!
Bài 5. Tìm x
a, \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x.\left(x+3\right)}=\frac{101}{1540}\)
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x.\left(x+3\right)}=\frac{101}{1540}\)
\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{308}\)
\(x+3=308\)
\(x=305\)
ket qua la 305
ai h cho minh minh h lai cho
tìm x, biết:
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\Rightarrow3\left(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}\right)=3.\frac{101}{1540}\)
\(\Rightarrow\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)
\(\Rightarrow x+3=308\)
\(\Rightarrow x=305\)
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\) (x khác 0; khác -3)
\(\Leftrightarrow\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)
<=>\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
<=>\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
<=>\(\frac{1}{x+3}=\frac{1}{308}\)
=>x+3=308
<=>x=305 (nhận)
Vậy x=305
Tìm x:\(\frac{1}{5.8}\)+\(\frac{1}{8.11}\)+\(\frac{1}{11.14}\)+...+\(\frac{1}{x\left(x+3\right)}\)=\(\frac{101}{1504}\)
Tìm x
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
=> \(\frac{1}{3}\left(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{101}{1540}\)
=> \(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
=> \(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
=> \(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}=\frac{303}{1540}\)
=> \(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)
=> \(x+3=308\)
=> x = 305
Vậy x = 305
tìm x biết : \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{101}{1540}.3\)
\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{308}\)
\(\Rightarrow x+3=308\Rightarrow x=305\)
Tìm x biết:
\(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x.\left(x+3\right)}=\frac{101}{1504}\)
Dấu ''.'' là dấu nhân
\(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1504}\)
\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1504}\)
\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1504}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1504}:\frac{1}{3}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1504}\)
\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1504}\)
\(\frac{1}{x+3}=-\frac{11}{7502}\)
\(x+3=\left(7502.1\right):\left(-11\right)\)
\(x+3=7502:\left(-11\right)\)
\(x+3=-682\)
\(x=-682-3\)
\(x=-385\)