Cho \(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{2^{2018}-1}\). Chứng minh A < 2018
Cho A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)
Chứng minh : \(\frac{2017}{2018} > A > \frac{2008}{2018} \)
Ta có : \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2018^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)
Xét B = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
=\(1-\frac{1}{2018}\)
Xét : \(\frac{2018}{2018}=1\)=) B < 1
khoan hình như sai đề
\(Cho\) \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)
\(Chứng\) \(minh\) \(\frac{2017}{2018}>A>\frac{2008}{2018}\)
A=\(\frac{\frac{1}{2018}+\frac{2}{2017}+\frac{3}{2016}+....+\frac{2017}{2}+\frac{2018}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2019}}\). Chứng minh rằng A là số nguyên
Mong mọi người giúp
cho:
\(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot.........\cdot\frac{2017}{2018}\)
chứng minh A<\(\frac{1}{2018}\)
cho a,b,c là 3 cạnh tam giác
chứng minh
\(\frac{1}{\left(a+b-c\right)^{2018}}+\frac{1}{\left(a+c-b\right)^{2018}}+\frac{1}{\left(b+c-a\right)^{2018}}\ge\frac{1}{a^{2018}}+\frac{1}{b^{2018}}+\frac{1}{c^{2018}}\)
Trước tiên ta chứng minh bổ đề: Với x, y dương thì ta có:
\(\frac{1}{x^n}+\frac{1}{y^n}\ge\frac{2^{n+1}}{\left(x+y\right)^n}\)
Với n = 1 thì nó đúng.
Giả sử nó đúng đến \(n=k\)hay \(\frac{1}{x^k}+\frac{1}{y^k}\ge\frac{2^{k+1}}{\left(x+y\right)^k}\left(1\right)\)
Ta chứng minh nó đúng đến \(n=k+1\)hay \(\frac{1}{x^{k+1}}+\frac{1}{y^{k+1}}\ge\frac{2^{k+2}}{\left(x+y\right)^{k+1}}\left(2\right)\)
Từ (1) và (2) cái ta cần chứng minh trở thành:
\(\frac{1}{x^{k+1}}+\frac{1}{y^{k+1}}\ge\left(\frac{1}{x^k}+\frac{1}{y^k}\right)\frac{2}{\left(x+y\right)}\)
\(\Leftrightarrow\left(y-x\right)\left(y^{k+1}-x^{k+1}\right)\ge0\)(đúng)
Vậy ta có ĐPCM.
Áp dụng và bài toán ta được
\(2\left(\frac{1}{\left(a+b-c\right)^{2018}}+\frac{1}{\left(b+c-a\right)^{2018}}+\frac{1}{\left(c+a-b\right)^{2018}}\right)\ge\frac{2^{2019}}{2^{2018}.a^{2018}}+\frac{2^{2019}}{2^{2018}.b^{2018}}+\frac{2^{2019}}{2^{2018}.c^{2018}}\)
\(\Leftrightarrow\frac{1}{\left(a+b-c\right)^{2018}}+\frac{1}{\left(b+c-a\right)^{2018}}+\frac{1}{\left(c+a-b\right)^{2018}}\ge\frac{1}{a^{2018}}+\frac{1}{b^{2018}}+\frac{1}{c^{2018}}\)
cho a,b,c là 3 cạnh tam giác
chứng minh
\(\frac{1}{\left(a+b-c\right)^{2018}}+\frac{1}{\left(a+c-b\right)^{2018}}+\frac{1}{\left(b+c-a\right)^{2018}}\ge\frac{1}{a^{2018}}+\frac{1}{b^{2018}}+\frac{1}{c^{2018}}\)
Cho S = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
P = \(1+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}\)
Chứng minh rằng: \(\left(S-P\right)^{2018}=1\)
\(S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}-2.\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1009}\right)\)
\(S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1009}\right)\)
\(S=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}=P-1\)
\(\Rightarrow\left(S-P\right)^{2018}=\left(P-1-P\right)^{2018}=\left(-1\right)^{2018}=1\)
Cho biểu thức A=1.2.3.4.5. .2018.(\(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{2018}\) ).Chứng minh rằng A chia hiết cho 2019
Ta có: \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}=\left(1+\frac{1}{2018}\right)+\left(\frac{1}{2}+\frac{1}{2017}\right)+...+\left(\frac{1}{1009}+\frac{1}{1010}\right)\)
\(=\frac{2019}{1.2018}+\frac{2019}{2.2017}+...+\frac{2019}{1009.1010}\)
\(=2019\left(\frac{1}{1.2018}+\frac{1}{2.2017}+...+\frac{1}{1009.1010}\right)\)
Do đó \(A=1.2.3....2018.2019\left(\frac{1}{1.2018}+\frac{1}{2.2017}+...+\frac{1}{1009.1010}\right)⋮2019\) (đpcm)
Cho \(M = (1+\frac{1}{2}+\frac{1}{3}+...++\frac{1}{2018}).2 .3 .4. ... .2018\)
Chứng minh : M chia hết cho 2019
M=[ 1+1/2018 +1/2 +1/2017 +1/3 +1/2016 +........+1/1009 +1/1010] .2.3.4...2018
M=[2019/2018 =2019/2.2017 +2019/3.2016 +....+2019/1009.1010].2.3.....2018
M.=2019.[1/2018 +1/2.2017 +.....+1/1009.1010] .2.3....2018 chia het cho 2019
suy ra M chia het cho2019
vay M chia het cho2019