Cho các số thực x,y,z thỏa mãn: x+y+z=0;−1≤x,y,z≤1x+y+z=0;−1≤x,y,z≤1 Chứng minh rằng: \(x^2+y^4+z^6\text{≤2}\)
hộ mik với
cho x,y,z là các số thực dương thỏa mãn x,y,z>0 thỏa mãn x(x-z)+y(y-z) =0 tìm GTNN của \(P=\frac{x^3}{x^2+z^2}+\frac{y^3}{y^2+z^2}+\frac{x^2+y^2+4}{x+y}\)
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
cho a,b,c là các số thực # 0. Tìm các số thực x,y,z #0 thỏa mãn: x*y/a*y+b*x=y*z/b*z+c*y=z*x/c*x+a*z=(x^2+y^2+z^2)/(a^2+b^2+c^2)
Cho các số thực x, y,z thỏa mãn 0 ≤ x,y,z ≤ 1 . Chứng minh rằng
x + y + z - 2( xy + yz + zx ) + 4xyz ≤ 1
Lời giải:
$2\text{VT}=2(x+y+z)-4(xy+yz+xz)+8xyz$
$=(2x-1)(2y-1)(2z-1)+1$
Do $x,y,z\in [0;1]$ nên $-1\leq 2x-1, 2y-1, 2z-1\leq 1$
$\Rightarrow (2x-1)(2y-1)(2z-1)\leq 1$
$\Rightarrow 2\text{VT}\leq 2$
$\Rightarrow \text{VT}\leq 1$
Ta có đpcm.
Dấu "=" xảy ra khi $(x,y,z)=(1,1,1), (0,0,1)$ và hoán vị.
Cho a,b,c là các số thực # 0. Tìm x,y,z là số thực # 0 thỏa mãn x*y/a*y+b*x=y*z/b*z+c*y=z*x/c*x+a*z=(x^2+y^2+z^2)/(a^2+b^2+c^2)
Cho các số thực x,y,z thuộc [-1,2] thỏa mãn x+y+z=0.Chứng minh
a,\(x^2\)+\(y^2\)+\(z^2\)\(\le\)6
b,\(x^2\)+\(y^2\)+\(z^2\)\(\le\)2xyz+2
Do \(x\in\left[-1;2\right]\Rightarrow\)\(\left(x+1\right)\left(x-2\right)\le0\Leftrightarrow x^2\le x+2\)
Tương tự: \(y^2\le y+2\) ; \(z^2\le z+2\)
Cộng vế: \(x^2+y^2+z^2\le x+y+z+6=6\) (đpcm)
Mặt khác \(x;y;z\in\left[-1;2\right]\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge0\)
\(\Leftrightarrow xyz+xy+yz+zx+x+y+z+1\ge0\)
\(\Leftrightarrow xyz+xy+yz+zx+1\ge0\)
\(\Leftrightarrow2xyz+2\ge-2\left(xy+yz+zx\right)\)
\(\Leftrightarrow2xyz+2\ge\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\)
\(\Leftrightarrow2xyz+2\ge x^2+y^2+z^2\) (đpcm)
Cho các số thực x ,y, z thỏa mãn x+y+z=0 , x2+y2+z2=8 .Tìm Min S=|x|+|y|+|z|
Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)
2 = 0
Lời giải:
Ta thấy:
$|x-1|\geq 0$ với mọi $x\in\mathbb{R}$
$|y-2|\geq 0$ với mọi $y\in\mathbb{R}$
$(z-x)^2\geq 0$ với mọi $z,x\in\mathbb{R}$
Do đó, để tổng của những số trên bằng $0$ thì:
$|x-1|=|y-2|=(z-x)^2=0$
$\Leftrightarrow x=z=1; y=2$
Ta có: \(\left|x-1\right|\ge0\forall x\)
\(\left|y-2\right|\ge0\forall y\)
\(\left(z-x\right)^2\ge0\forall z,x\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}z=x=1\\y=2\end{matrix}\right.\)
\(\text{cho x,y,z là các số thực khác 0 và thỏa mãn điều kiện xy+yz+zx=0. Tính giá trị của biểu thức A= }\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{x+z}{y}\)
\(\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{x+z}{y}=\dfrac{x^2y+xy^2+y^2z+yz^2+x^2z+xz^2}{xyz}=\dfrac{-3xyz}{xyz}=-3\)
đề cho xy+yz+xz=0 nhân cả 2 vế với -z
=>-xyz-\(z^2\left(y+x\right)\)=0
=>-xyz=\(z^2x+z^2y\)
cmtt bạn nhân với -y và -z
=>-3xyz=\(x^2y+xy^2+y^2z+yz^2+x^2z+xz^2\)
cho các số thực x,y,z thỏa mãn \(\left(x-y +z\right)^2\)+\(\sqrt{y^4}\)+\(\left|1-z^3\right|\) \(\le\) 0
Chứng minh rằng \(x^{2023}\)+\(y^{2024}\)+\(z^{2025}\)=0
Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:
$(x-y+z)^2\geq 0$
$\sqrt{y^4}\geq 0$
$|1-z^3|\geq 0$
$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$
Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$
$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$
Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$
$\Leftrightarrow y=0; z=1; x=-1$
Cho ba số thực x, y, z thỏa mãn đồng thời các biểu thức: x + 2 y + 3 z - 10 = 0 , 3 x + y + 2 z - 13 = 0 và 2 x + 3 y + z - 13 = 0 . Tính T = 2 ( x + y + z ) ?
A. T = 12
B. T = -12
C. T = -6
D. T = 6