Cho 2 số tự nhiên a,b : Chứng minh 2a+3b Chia hết cho 7 <=> 3a+b Chia hết cho 7
Có: a+5b chia hết cho 7
=> 2.(a+5b)\(⋮\) 7
\(\Leftrightarrow2a+10b⋮7\)
\(\Rightarrow2a+10-7b\) chia hết cho 7 ( do 7b chia hết cho 7 )
\(\Leftrightarrow2a+3b\) chia hết cho 7
=> điều phải chứng minh
a) Cho a,b số tự nhiên thỏa mãn điều kiện 5a + 2b chia hết cho 7 chứng minh 3a + 4b chia hết cho 7
b) cho a,b số tự nhiên. Chứng minh (5a+3b) và (13a + 8b) cùng là bội của 2017 thì a, b cũng là bội của 2017
a/
\(5a+2b⋮7\Rightarrow2\left(5a+2b\right)=10a+4b⋮7\)
\(7a⋮7\)
\(\Rightarrow10a+4b-7a=3a+4b⋮7\)
cho các số tự nhiên a,b biết 2a+b chia hết cho 7 . chứng tỏ rằng
a,a+4b chia hết cho 7
b,3a - 2b chia hết cho 7
Mn giúp em nhanh với ạ
a, Ta có:\(2a+b+5\left(a+4b\right)=2a+b+5a+20b=7a+21b=7\left(a+3b\right)⋮7\)
Mà \(2a+b⋮7\Rightarrow a+4b⋮7\)
b, Ta có:\(2\left(2a+b\right)+3a-2b=4a+2b+3a-2b=7a⋮7\)
Mà \(2a+b⋮7\Rightarrow3a-2b⋮7\)
câu thứ 2
a - 5b chia hết cho 17 thì 10a-50b chia hết cho 17
10a-50b=10a+b-51b
51b chia hết cho 17 nên 10a+b chia hết cho 17
51a : 17
=> 51a - a + 5b : 17
=> 50a + 5b : 17
=> 5 ( 10a + b ) : 17
=> 10a + b : 17
Ta có : tích của 2 và 3 thì chia hết cho 17
=> 10a = 2 x 5 x a + b chia hết cho 17
Những câu dưới bạn tự làm nha
cho 2 số nguyên a,b thỏa man:(3a+2b)*(2a+3b) chia hết cho 5
chứng minh (3a+2b)*(2a+3b) chia hết cho 25
Vì 5 là 1 số nguyên tố ⇒ Ít nhất 1 trong 2 số (3a+2b) và(2a+3b) phải chia hết cho 5.
Không mất tính tổng quát, giả sử (3a+2b) ⋮ 5
5(a+b) đương nhiên chia hết cho 5 ⇒5(a+b)-(3a+2b) ⋮ 5
Hay (2a+3b) ⋮ 5
Vậy, nếu (3a+2b)*(2a+3b) ⋮ 5 thì (3a+2b)*(2a+3b) ⋮ 25 (ĐPCM)
cho a và b là số tự nhiên và a-b chia hết cho 7 .chứng minh 4a+3b chia hết cho 7
ta có:
a-b chia hết cho 7
3a- 3b cũng chia hết cho 7
ta có: 3a-3b + 4b+3b
= 7a chia hết cho 7
mà 3a-3b chia hết cho 7, 3a-3b + 4b+3b hay 7a chia hết cho 7 => 4b+3b chia hết cho 7
xong r
tìm số tự nhiên a biết :
a) a-4 chia hết cho a-1
b) 2a chia hết cho a+1
c) 6a + 7 chia hết cho 3a +2
d) 12a +5 chia hết cho 3a +2
Bài 1:a) Chứng minh rằng a3-13a chia hết cho 6 với a là số tự nhiên lớn hơn 1
b) Cho số abc chia hết cho 7 , chứng minh rằng 2a+3b+c chia hết cho 7
1)a)Ta có:\(a^3-13a=a^3-a-12a=\left(a-1\right)a\left(a+1\right)-12a\)
Ta có:\(\left(a-1\right)a\left(a+1\right)⋮\)2 và 3;\(12a⋮6\)
Mà (2;3)=1\(\Rightarrow\left(a-1\right)a\left(a+1\right)⋮6\)
\(\Rightarrow\left(a-1\right)a\left(a+1\right)-12a⋮6\left(đpcm\right)\)
b)Hình như đề sai