Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Cẩm Tú
Xem chi tiết
zz haiiizzz
Xem chi tiết
Golem Hero
Xem chi tiết
no name 1010
13 tháng 3 2022 lúc 20:48

 

Dựng BG ⊥ AC.

Xét ∆ BGA và ∆ CEA, ta có:

ˆBGA=ˆCEA=90∘BGA^=CEA^=90∘

ˆAA^ chung

Suy ra: ∆ BGA đồng dạng ∆ CEA (g.g)

Suy ra: ABAC=AGAEABAC=AGAE

Suy ra: AB.AE = AC.AG   (1)

Xét ∆ BGC và ∆ CFA, ta có:

ˆBGC=ˆCFA=90∘;BGC^=CFA^=90∘

ˆBCG=ˆCAF;BCG^=CAF^  (so le trong vì AD // BC)

Suy ra: ∆ BGC đồng dạng ∆ CFA (g.g)

Suy ra: AFCG=ACBC⇒BC.AF=AC.CGAFCG=ACBC⇒BC.AF=AC.CG

Mà BC = AD (tính chất hình bình hành )

Suy ra: AD.AF = AC.CG            (2)

Cộng từng vế của đẳng thức (1) và (2) ta có:

AB.AE + AD.AF = AC.AG + AC.CG

⇒AB.AE+AD.AF=AC(AG+CG)⇒AB.AE+AD.AF=AC(AG+CG)

Mà AG+CG=ACAG+CG=AC  nên AB.AE+AD.AF=AC2

no name 1010
13 tháng 3 2022 lúc 20:49

có gì sai mong bạn sửa lại nha

 

Lê
Xem chi tiết
Âu Minh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 3 2023 lúc 15:05

a: Xet ΔAHB vuông tại H và ΔAEC vuông tại E có

góc EAC chung

=>ΔAHB đồng dạng với ΔAEC
=>AH/AE=AB/AC

=>AH*AC=AE*AB

b: Xét ΔHCB vuông tại H và ΔFAC vuông tại F có

góc HCB=góc FAC

=>ΔHCB đồng dạng với ΔFAC

=>CH/AF=CB/CA
=>CH*CA=CB*AF=AD*AF
=>AB*AE+AD*AF=AC^2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 7 2018 lúc 11:02

Dựng BG ⊥ AC.

Xét ΔBGA và ΔCEA, ta có:

∠ (BGA) =  ∠ (CEA) =  90 0

∠ A chung

BGA đồng dạng CEA(g.g)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

AB.AE = AC.AG (1)

Xét  △ BGC và  △ CFA, ta có:

∠ (BGC) =  ∠ (CFA) = 90 0

∠ (BCG) =  ∠ (CAF) (so le trong vì AD //BC)

△ BGC đồng dạng △ CFA (g.g)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ⇒ BC.AF = AC.CG

Mà BC = AD (tính chất hình bình hành)

Suy ra: AD.AF = AC.CG (2)

Cộng từng vế đẳng thức (1) và (2) ta có:

AB.AE + AD.AF = AC.AG + AC.CG

AB.AE + AD.AF= AC(AG + CG)

Mà AG + CG = AC nên AB.AE + AD.AF =  A C 2

Phan Thị Hồng Nhung
Xem chi tiết

 Ta chứng minh

 

Tương tự câu a ta chứng minh được  

Þ AD.AF =AK.AC (2)

 Từ (1) ta có AB.AE = AC.AH (3)

Lấy (3) + (2) ta được AD.AF + AB.AE = AC2 (ĐPCM)

Khách vãng lai đã xóa
Phong Loi
Xem chi tiết
Linh Linh
26 tháng 3 2019 lúc 18:44

a. hai tg ABG và tg ACE vuông tại G và E có góc GAB chung nên đồng dạng(gg) 
b. Vì tg AEC và ABG đồng dạng --> AB/AC = AG/AE -> AB.AE = AC.AG(1) 
Vì hai tg vuông AFC và CGB có góc CAF = góc BCG (slt) --> tg AFC và tg CGB đồng dạng --> AF/CG = AC/BC --> AF.BC = AC.CG thay BC = AD --> AF.AD = AC.CG (2). 
Cộng (1) và (2) vế theo vế --> AB.AE + AD.AF = AC.AG + AC.CG = AC(AG+GC) = AC.AC = AC^2 
Vậy AB.AE + AD.AF = AC^2.

jungkook
Xem chi tiết