Cho hình bình hành ABCD (AC>BD),hình chiếu vuông góc của C lên AB,AD lần lượt là E và F
Chúng minh:1,CE.CD=CB.CF và △ABC đồng dạng △FCE
2,AB.AE+AD.AF=AC2
Cho hình thang ABCD (CD>AB) với AB//CD và AB vuông góc với BD. Hai đường chéo AC và BD cắt nhau tại G. Trên đường thẳng vuông góc với AC tại C lấy điểm E sao cho CE=AG và đoạn thẳng GE không cắt đường thẳng CD. Trên đoạn thẳng DC lấy điểm F sao cho DF=GB
a) Chứng minh tam giác FDG đồng dạng với tam giác ECG
b) Chứng minh: GF vuông góc với EF
cho hình chữ ngật ABCD có AB=3cm, BC=3cm
a) Tính BD
b) Qua B, vẽ đường thẳng vuông góc với BD cắt đường thẳng DC tại E. Vẽ CF vuông góc với BE tại F. Chứng minh: tam giác BCD đồng dạng tam giác CFB. Tính CF
c) Gọi O là giao điểm của AC và BD. Nối EO cắt CF tại I và cắt BC tại K. Chứng minh: I là trung điểm của CF
d) chứng minh: D,K, F thẳng hàng
Cho tam giác ABC nhọn (AB<AC) hai đường cao BE và CF cắt nhau tại H.Vẽ đường thẳng vuông góc với AB tại B, vẽ đường thẳng vuông góc với AC tại C , hai đường thẳng này cắt nhau tại D
a) C/m : AH vuông góc với BC và tứ giác BHCD là hình bình hành
b) Gọi M là trung điểm BC. C/m : 3 điểm H, M, D thẳng hành và tam giác EMF cân
c) Gọi K là điểm đối xứng của H qua BC .C/m BD=CK
d) Dường thẳng vuông góc tại M cắt AD tại L. C/m AH = 2ML
Cho hình thang ABCD (AB//CD). Gọi F là giao điểm của hai đường chéo AC và BD.
a, CM: ΔFAB đồng dạng với ΔFCD
b, CM: FA.FD=FB.FC
c, Đường thẳng qua F vuông góc với AB tại M và cắt CD tại N, biết FB=3cm; FD= 6cm; FM= 2cm; CD= 8cm. Hãy tính diện tích ΔFCD
2.
Cho hình thang ABCD (AB//CD). Gọi F là giao điểm của hai đường chéo AC và BD.
a, CM: ΔFAB đồng dạng với ΔFCD
b, CM: FA.FD=FB.FC
c, Đường thẳng qua F vuông góc với AB tại M và cắt CD tại N, biết FB=3cm; FD= 6cm; FM= 2cm; CD= 8cm. Hãy tính diện tích ΔFCD
3.
Cho tam giác ABC vuông tại A có AB = 12cm, AC =16cm. kẻ đường cao AH.
a) Cm tam giác HBA đồng dạng tam giác ABC.
b) Tính BC,AH,BH
c) gọi AD là phân giac góc BAC ( D thuộc BC)
tính diện tích tam giac AHD (làm tròn đến chữ số thâp phân thứ nhất)
Cho hình thang ABCD (AB//CD). Gọi F là giao điểm của hai đường chéo AC và BD.
a, CM: ΔFAB đồng dạng với ΔFCD
b, CM: FA.FD=FB.FC
c, Đường thẳng qua F vuông góc với AB tại M và cắt CD tại N, biết FB=3cm; FD= 6cm; FM= 2cm; CD= 8cm. Hãy tính diện tích ΔFCD
(Làm hộ mk ý b nha)
Cho tam giác ABC nhọn, AB>AC có các đường cao AD, BE, CF cắt nhau tại H. Gọi P, Q lần lượt là hình chiếu vuông góc của E và F trên BC. ĐƯờng thẳng qua H vuông góc với AD cắt EP và FQ lần lượt tại M và N.
a) Chứng minh: Tam giác EMH đồng dạng với tam giác CPE.
b) HM.QF=HN.EP
Câu 4 :
1.Cho tam giác nhọn ABC ( AB < AC ) có hai đường cao BM và CN cắt nhau tại H . Đường thẳng vuông góc với AC tại C cắt đường thẳng vuông góc với AB tại B ở D
a, CHứng minh tứ giác BHCD là hình bình hành
b, Gọi O là trung điểm của đoạn thẳng AD . Qua điểm O kẻ đường thẳng vuông góc với AH cắt BC tại K . Chứng minh K là trung điểm của BC và tính độ dài đoạn thẳng OK biết AH=6cm
2.Cho tam giác ABC có các đường phân giác BD , CE cắt nhau tại I và BD.CE=2BI.CI . Tính số đo \(\widehat{BAC}\)