Tính tổng 2 đa thức
P = x2y + xy2 – 5x2y2 + x3 và Q = 3xy2 – x2y + x2y2.
Tính tổng của các đa thức:
P = x2y + xy2 – 5x2y2 + x3 và Q = 3xy2 – x2y + x2y2
Ta có: P = x2y + xy2 – 5x2y2 + x3 và Q = 3xy2 – x2y + x2y2
⇒ P + Q = (x2y + xy2 – 5x2y2 + x3) + (3xy2 – x2y + x2y2)
= x2y + xy2 – 5x2y2 + x3 + 3xy2 – x2y + x2y2
= x3 +(– 5x2y2 + x2y2)+ (x2y – x2y) + (xy2+ 3xy2)
= x3 – 4x2y2 + 0 + 4xy2
= x3 – 4x2y2 + 4xy2
Cho hai đa thức P = x 2 y + x y 2 - 5 x 2 y 2 + x 3 , Q = 3 x y 2 - x 2 y + x 2 y 2
Tổng P + Q là đa thức nào dưới đây?
A. - 4 x 2 y 2 - x 3 + 4 x y 2
B. - 4 x 2 y 2 + x 3 + 4 x y 2
C. 4 x 2 y 2 + x 3 + 4 x y 2
D. - 4 x 2 y 2 + x 3 - 4 x y 2
Ta có P + Q=x2 y + xy2 - 5x2 y2 + x3 + 3xy2 - x2 y + x2 y2
= -4x2 y2 + x3 + 4xy2
Chọn B
Viết các đa thức sau dưới dạng tổng của các đơn thức rồi thu gọn các đơn thức đồng dạng(nếu có)và tìm bậc của những đa thức đó với tập hợp các biến.
a) (x2 - y2) (x2 + y2) - 3xy2(x + y) + 5x2y2 + x2y(x - y)
b) 3x(x2y + xy2) - 7xy(x2 - y2) - x(3y2 - 2xy2 - 5y - 1)
Tính tổng của đa thức
P = x2y + x3 – xy2 + 3 và Q = x3 + xy2 – xy – 6.
P + Q = (x2y + x3 – xy2 + 3) + (x3 + xy2 – xy – 6)
= x2y + x3 – xy2 + 3 + x3 + xy2 – xy – 6
= (x3 + x3) + x2y + (xy2 – xy2) – xy + (3 – 6)
= 2x3 + x2y – xy – 3
Vậy P + Q = 2x3 + x2y – xy – 3.
Tính tổng và hiệu của hai đa thức P = x2y + x3 – xy2 + 3 và Q = x3 + xy2 – xy – 6
Ta có:
• P + Q = (x2y + x3 – xy2 + 3) + (x3 + xy2 – xy – 6)
= x2y + x3 – xy2 + 3 + x3 + xy2 – xy – 6
= x2y + (x3 + x3) + (xy2 – xy2) – xy + (3 – 6)
= x2y + 2x3 – xy – 3.
• P – Q = (x2y + x3 – xy2 + 3) – (x3 + xy2 – xy – 6)
= x2y + x3 – xy2 + 3 – x3 – xy2 + xy + 6
= x2y + (x3 – x3) – (xy2 + xy2) + xy + (6 + 3)
= x2y – 2xy2 + xy + 9.
Vậy P + Q = x2y + 2x3 – xy – 3; P – Q = x2y – 2xy2 + xy + 9.
\(\text{ P + Q = (x^2y + x^3 – xy^2 + 3) + (x^3 + xy^2 – xy – 6)}\)
\(\text{= x^2y + x^3 – xy^2 + 3 + x^3 + xy^2 – xy – 6}\)
\(\text{= x^2y + (x^3 + x^3) + (xy^2 – xy^2) – xy + (3 – 6)}\)
\(\text{= x^2y + 2x^3 – xy – 3}\)
__________________________________________________
\(\text{P – Q = (x^2y + x^3 – xy^2 + 3) – (x^3 + xy^2 – xy – 6)}\)
\(\text{= x^2y + x^3 – xy^2 + 3 – x^3 – xy^2 + xy + 6}\)
\(\text{= x^2y + (x^3 – x^3) – (xy^2 + xy^2) + xy + (6 + 3)}\)
\(\text{= x^2y – 2xy^2 + xy + 9}\)
1. Tính tổng của hai đa thức trong mỗi trường hợp sau :
a, P= x2y + x3 - xy2 +3 và Q= x3 + xy2 - xy - 6
b, M= x2y + 0,5xy3 - 7,5 x3y2 + x3 và N= 3xy3 - x2y + 5,5x3y2
a/ \(P+Q=\left(x^2y+x^3-xy^2+3\right)+\left(x^3+xy^2-xy-6\right)\)
\(=x^2y+x^3-xy^2+3+x^3+xy^2-xy-6\)
\(=\left(x^3+x^3\right)+\left(xy^2-xy^2\right)+\left(3-6\right)+x^2y-xy\)
\(=2x^3+x^2y-xy-3\)
b/ \(M+N=\left(x^2y+0,5xy^3-7,5x^3y^2+x^3\right)+\)
\(\left(3xy^3-x^2y+5,5x^3y^2\right)\)
\(=x^2y+0,5xy^3-7,5x^3y^2+x^3+3xy^3-x^2y+5,5x^3y^2\)
\(=\left(x^2y-x^2y\right)+\left(0,5xy^3+3xy^3\right)+\left(5,5x^3y^2-7,5x^3y^2\right)+x^3\)
\(=3,5xy^3-2x^3y^2+x^3\)
Cho hai đa thức P = x2y2 - 4x2y - xy2 + 2xy và Q = 4x2y2 + xy; Tính P + Q = ?
A) 5x2y2 - 4x2y - xy2 + 3xy
B) x2y2 + 3xy
C) 5x2y2 - 4x2y - xy2 + xy
D) x2y2 - 4x2y - xy2 + 3xy
\(P+Q=x^2y^2-4x^2y-xy^2+2xy+4x^2y^2+xy\)
\(P+Q=5x^2y^2-xy^2-4x^2y+3xy\)
Cho Q = 3xy2 – 2xy + x2y – 2y4. Đa thức N nào trong các đa thức sau thoả mãn :
Q – N = -2y4 + x2y + xy
A. N = 3xy2 -3 x2y B. N = 3xy-3 x2y C. N = -3xy2 -3 x2y D. N = 3xy2 -3 xy
Thực hiện phép tính:
a) (x2y - xy + xy2 + y3). 3xy2; b)(2x3-9x2+19x-15):(x2-3x+5)
c)(x3 - 3x2 + x - 3):( x - 3)
\(a,=3x^3y^3-3x^2y^3+3x^2y^4+3xy^5\\ b,=\left(2x^3-6x^2+10x-3x^2+9x-15\right):\left(x^2-3x+5\right)\\ =\left[2x\left(x^2-3x+5\right)-3\left(x^2-3x+5\right)\right]:\left(x^2-3x+5\right)\\ =2x-3\\ c,=\left[x^2\left(x-3\right)+\left(x-3\right)\right]:\left(x-3\right)=x^2+1\)
Tính tổng của hai đa thức:
a) M = x2y + 0,5xy3 – 7,5x3y2 + x3 và N = 3xy3 – x2y + 5,5x3y2
b) P = x5 + xy + 0,3y2 – x2y3 – 2 và Q = x2y3 + 5 – 1,3y2
a)\(M+N=x^2y+0,5xy^3-7,5x^3y^2+x^3+3xy^3-x^2y+5,5x^3y^2=x^3+3,5xy^3-2x^3y^2\)b) \(P+Q=x^5+xy+0,3y^2-x^2y^3-2+x^2y^3+5-1,3y^2=x^5-y^2+xy+3\)